Home
Class 12
MATHS
inte^(x)((1+sinx)/(1+cosx))dx=?...

`inte^(x)((1+sinx)/(1+cosx))dx=?`

A

`e^(x)"sin"(x)/(2)+C`

B

`e^(x)"cos"(x)/(2)+C`

C

`e^(x)"tan"(x)/(2)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`I=inte^(x)((1+2sin((x)/(2))cos((x)/(2)))/(2cos^(2)((x)/(2))))dx=inte^(x)("tan"(x)/(2)+(1)/(2)"sec"^(2)(x)/(2))dx`
`=inte^(x){f(x)+f'(x)}dx," where "f(x)="tan"(x)/(2)`
`=e^(x)f(x)+C=e^(x)"tan"(x)/(2)+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate int e^(x)((1-sinx)/(1-cosx))dx.

int(e^x(1-sinx))/(1-cosx)dx

int(sinx)/((1+cosx))dx

int((1+sinx))/((1+cosx))dx=?

int((x-sinx)/(1+cosx))dx

Evaluate int(e^x(1+sinx))/(1+cosx)dx

int(x+sinx)/(1-cosx)dx=

int(x-sinx)/(1-cosx)dx

inte^((x)/(2))((2-sinx)/(1-cosx))dx=