Home
Class 12
MATHS
If z = ((1)/(sqrt(3)) + (1)/(2)i)^(7) + ...

If `z = ((1)/(sqrt(3)) + (1)/(2)i)^(7) + ((1)/(sqrt(3))-(1)/(2)i)^(7)`, then

A

Re (z) = 0

B

Im (z) = 0

C

Re (z) `gt` 0, Im (z) `lt` 0

D

Re (z) `lt` 0, Im (z) `gt` 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( z = \left( \frac{1}{\sqrt{3}} + \frac{1}{2} i \right)^{7} + \left( \frac{1}{\sqrt{3}} - \frac{1}{2} i \right)^{7} \), we can use the binomial theorem and properties of complex numbers. ### Step-by-Step Solution: 1. **Identify the terms**: Let \( a = \frac{1}{\sqrt{3}} \) and \( b = \frac{1}{2} i \). Then we can rewrite \( z \) as: \[ z = (a + b)^{7} + (a - b)^{7} \] 2. **Apply the Binomial Theorem**: According to the binomial theorem: \[ (x + y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k} \] We can apply this to both \( (a + b)^{7} \) and \( (a - b)^{7} \). 3. **Expand \( (a + b)^{7} \)**: \[ (a + b)^{7} = \sum_{k=0}^{7} \binom{7}{k} a^{7-k} b^{k} \] 4. **Expand \( (a - b)^{7} \)**: \[ (a - b)^{7} = \sum_{k=0}^{7} \binom{7}{k} a^{7-k} (-b)^{k} = \sum_{k=0}^{7} \binom{7}{k} a^{7-k} (-1)^{k} b^{k} \] 5. **Combine the expansions**: \[ z = \sum_{k=0}^{7} \binom{7}{k} a^{7-k} b^{k} + \sum_{k=0}^{7} \binom{7}{k} a^{7-k} (-1)^{k} b^{k} \] This simplifies to: \[ z = \sum_{k=0}^{7} \binom{7}{k} a^{7-k} b^{k} (1 + (-1)^{k}) \] 6. **Identify terms that contribute to \( z \)**: The expression \( (1 + (-1)^{k}) \) equals: - 2 when \( k \) is even (because \( (-1)^{k} = 1 \)) - 0 when \( k \) is odd (because \( (-1)^{k} = -1 \)) Therefore, only the even \( k \) terms contribute to \( z \). 7. **Sum the even terms**: \[ z = 2 \sum_{k \text{ even}} \binom{7}{k} a^{7-k} b^{k} \] The even values of \( k \) are \( 0, 2, 4, 6 \). 8. **Calculate each term**: - For \( k = 0 \): \( 2 \cdot \binom{7}{0} a^{7} b^{0} = 2 \cdot 1 \cdot \left( \frac{1}{\sqrt{3}} \right)^{7} \) - For \( k = 2 \): \( 2 \cdot \binom{7}{2} a^{5} b^{2} = 2 \cdot 21 \cdot \left( \frac{1}{\sqrt{3}} \right)^{5} \cdot \left( \frac{1}{2} i \right)^{2} = 2 \cdot 21 \cdot \left( \frac{1}{\sqrt{3}} \right)^{5} \cdot \left( -\frac{1}{4} \right) \) - For \( k = 4 \): \( 2 \cdot \binom{7}{4} a^{3} b^{4} = 2 \cdot 35 \cdot \left( \frac{1}{\sqrt{3}} \right)^{3} \cdot \left( \frac{1}{2} i \right)^{4} = 2 \cdot 35 \cdot \left( \frac{1}{\sqrt{3}} \right)^{3} \cdot \left( \frac{1}{16} \right) \) - For \( k = 6 \): \( 2 \cdot \binom{7}{6} a^{1} b^{6} = 2 \cdot 7 \cdot \left( \frac{1}{\sqrt{3}} \right)^{1} \cdot \left( \frac{1}{2} i \right)^{6} = 2 \cdot 7 \cdot \left( \frac{1}{\sqrt{3}} \right) \cdot \left( -\frac{1}{64} \right) \) 9. **Combine all contributions**: After calculating, we will find that all contributions are real, and the imaginary parts cancel out. 10. **Conclusion**: Therefore, the imaginary part of \( z \) is zero, and \( z \) is purely real. ### Final Answer: The value of \( z \) is a real number, and the imaginary part of \( z \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 1|55 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 2|1 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

the value of ((-1+sqrt(3)i)/(2))^(3n)+((-1-sqrt(3)i)/(2))^(3n)=

If i=sqrt(-)1, then 4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(365) is equal to (1)1-i sqrt(3)(2)-1+i sqrt(3)(3)i sqrt(3)(4)-i sqrt(3)

What is the value of ((-1+i sqrt(3))/(2))^(3n)+((-1-i sqrt(3))/(2))^(3n), where i=sqrt(-1)?

Let z = ((2)/(i + sqrt(3)))^(200)+((2)/(i-sqrt(3)))^(200),"then" |z + (1.7)^(2)| = ________________.

Rationalise the denominator of each of the following. (i) (1)/(sqrt(7)) (ii) (sqrt(5))/(2sqrt(3)) (iii) (1)/(2+ sqrt(3)) (1)/(sqrt(3)) (v) (1)/((5+3sqrt(2)) (vi) (1)/(sqrt(7) - sqrt(6)) (vi) (1)/(sqrt(7) - sqrt(6)) (viii) (1+ sqrt(2))/(2-sqrt(2)) (ix) (3-2sqrt(2))/(3+2sqrt(2))

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

(i)1/sqrt(2)+sqrt(3)+1/sqrt(2)

((1+sqrt(3)i)/(1-sqrt(3)i))^(181) + ((1-sqrt(3)i)/(1+sqrt(3)i))^(181) is equal to ______________

The value of ((1+sqrt(3)i)/(1-sqrt(3)i))^(64)+((1-sqrt(3)i)/(1+sqrt(3)i))^(64) is

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER
  1. If z = ((1)/(sqrt(3)) + (1)/(2)i)^(7) + ((1)/(sqrt(3))-(1)/(2)i)^(7), ...

    Text Solution

    |

  2. (5 + i sin theta)/(5-3i sin theta) is a real number when

    Text Solution

    |

  3. Two points P and Q in the Argand diagram represent z and 2z+ 3 +i. If ...

    Text Solution

    |

  4. Let z be a complex number such that |z| = 2, then maximum possible val...

    Text Solution

    |

  5. If i = sqrt(-1), then 4 + 3 (-(1)/(2) + i(sqrt(3))/(2))^(127)+5(-(1)/(...

    Text Solution

    |

  6. The real part of a complex number z having minimum principal argument ...

    Text Solution

    |

  7. Show that the area of the triangle on the Argand diagram formed by the...

    Text Solution

    |

  8. Two circles in the complex plane are {:(C(1) : |z-i|=2),(C(2) : |z-1...

    Text Solution

    |

  9. If z = i(i + sqrt(2)), then value of z^(4) + 4z^(3) + 6z^(2) + 4z is

    Text Solution

    |

  10. Suppose z is a complex number such that z ne -1, |z| = 1 and arg(z) = ...

    Text Solution

    |

  11. If |z(1)| = |z(2)| = |z(3)| = 1 and z(1) + z(2) + z(3) = sqrt(2) + i, ...

    Text Solution

    |

  12. Let S = {z in C: z(iz(1) - 1) = z(1) +1, |z(1)| lt 1}. Then, for all z...

    Text Solution

    |

  13. If (4 + 3i)^(2) = 7 + 24i, then a value of (7 + sqrt(-576))^(1//2) - (...

    Text Solution

    |

  14. Let A = {z in CC: |z| = 25) and B = {z in CC: |z +5+12i|= 4}. Then the...

    Text Solution

    |

  15. If z(1),z(2) and z(3) are three distinct complex numbers such that |z(...

    Text Solution

    |

  16. The locus of the point w = Re(z) + 1/z , where |z|=3, in complex plan...

    Text Solution

    |

  17. Let z(ne -1) be any complex number such that |z| = 1. Then the imagina...

    Text Solution

    |

  18. Let u = (1)/(2) (-1 + sqrt(3)i) and z = u - u^(2) - 2. Then the value ...

    Text Solution

    |