Home
Class 12
MATHS
The real part of z = (1)/(1-cos theta + ...

The real part of `z = (1)/(1-cos theta + i sin theta)` is

A

`(1)/(1-cos theta)`

B

`(1)/(2)`

C

`(1)/(2) tan theta`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the real part of the complex number \( z = \frac{1}{1 - \cos \theta + i \sin \theta} \), we will follow these steps: ### Step 1: Identify the complex number We start with the complex number: \[ z = \frac{1}{1 - \cos \theta + i \sin \theta} \] ### Step 2: Multiply by the conjugate To simplify this expression, we multiply both the numerator and the denominator by the conjugate of the denominator. The conjugate of \( 1 - \cos \theta + i \sin \theta \) is \( 1 - \cos \theta - i \sin \theta \). Thus, we have: \[ z = \frac{1 \cdot (1 - \cos \theta - i \sin \theta)}{(1 - \cos \theta + i \sin \theta)(1 - \cos \theta - i \sin \theta)} \] ### Step 3: Simplify the denominator Using the formula \( (a + b)(a - b) = a^2 - b^2 \), we can simplify the denominator: \[ (1 - \cos \theta)^2 - (i \sin \theta)^2 = (1 - \cos \theta)^2 - (-1)(\sin^2 \theta) \] This simplifies to: \[ (1 - \cos \theta)^2 + \sin^2 \theta \] ### Step 4: Expand the denominator Now we expand \( (1 - \cos \theta)^2 \): \[ (1 - \cos \theta)^2 = 1 - 2\cos \theta + \cos^2 \theta \] Thus, the denominator becomes: \[ 1 - 2\cos \theta + \cos^2 \theta + \sin^2 \theta \] Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can simplify this to: \[ 1 - 2\cos \theta + 1 = 2 - 2\cos \theta = 2(1 - \cos \theta) \] ### Step 5: Simplify the numerator The numerator remains: \[ 1 - \cos \theta - i \sin \theta \] ### Step 6: Write \( z \) in standard form Now we can write \( z \) as: \[ z = \frac{1 - \cos \theta - i \sin \theta}{2(1 - \cos \theta)} \] This can be separated into real and imaginary parts: \[ z = \frac{1 - \cos \theta}{2(1 - \cos \theta)} - i \frac{\sin \theta}{2(1 - \cos \theta)} \] This simplifies to: \[ z = \frac{1}{2} - i \frac{\sin \theta}{2(1 - \cos \theta)} \] ### Step 7: Identify the real part The real part of \( z \) is: \[ \text{Re}(z) = \frac{1}{2} \] ### Final Answer Thus, the real part of \( z \) is: \[ \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

Solve (1)/(cos theta-i sin theta)

1 + cos theta + i sin theta | =?

The real part of (1-cos theta+2sin theta)^(-1)

The argument of 1-cos theta-i sin theta is

If the real part of the complex number (1 - cos theta + 2 i sin theta) ^(-1) is (1)/(5) for theta in (0, pi), then the value of the integral int _(0) ^(theta) sin xdx is equal to :

If x=(2sin theta)/(1+cos theta+sin theta), then prove that (1-cos theta+sin theta)/(1+sin theta) is equal to x

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -SOLVED EXAMPLES LEVEL 1
  1. If x=2+ 5i then the value of x^3-5x^2+33x-19 is

    Text Solution

    |

  2. If z=x+iy and w=(1-iz)/(z-i), then |w|=1 implies that in the complex ...

    Text Solution

    |

  3. The real part of z = (1)/(1-cos theta + i sin theta) is

    Text Solution

    |

  4. If the imaginary part of (2z + 1)/(iz + 1) is -4, then the locus of th...

    Text Solution

    |

  5. Show that the area of the triagle on the argand plane formed by the co...

    Text Solution

    |

  6. If omega is a complex cube root of unity, then a root of the equation ...

    Text Solution

    |

  7. Let z1 and z2 be two non - zero complex numbers such that z1/z2+z2/z...

    Text Solution

    |

  8. If (1+x+x^2)^n=a0+a1x+a2x^2++a(2n)x(2n), find the value of a0+a6++ ,n ...

    Text Solution

    |

  9. Let z = |(1,1-2i,3+5i),(1+2i,-5,10i),(3-5i,-10i,11)|, then

    Text Solution

    |

  10. if (x+i y)^(1/3) = a+ib then (x/a) + (y/b) equals to

    Text Solution

    |

  11. If z epsilon C, the minimum value of |z| + |z-i| is attained at

    Text Solution

    |

  12. For all complex numbers z1, z2 satisfying |z1| =12 and |z2-3-4i|=5, ...

    Text Solution

    |

  13. If z lies on the circle |z-1|=1, then (z-2)/z is

    Text Solution

    |

  14. If 1, omega, ......,omega^(n-1) are the n^(th) roots of unity,then va...

    Text Solution

    |

  15. If omega = "cos"(pi)/(n) + "i sin" (pi)/(n), then value of 1 + omega +...

    Text Solution

    |

  16. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  17. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  18. If |z^2-1|=|z|^2+1, then z lies on (a) a circle (b) the imaginar...

    Text Solution

    |

  19. If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+...

    Text Solution

    |

  20. If |z""+""4|lt=3 , then the maximum value of |z""+""1| is (1) 4...

    Text Solution

    |