Home
Class 12
MATHS
Let z = |(1,1-2i,3+5i),(1+2i,-5,10i),(3-...

Let `z = |(1,1-2i,3+5i),(1+2i,-5,10i),(3-5i,-10i,11)|`, then

A

z is purely imaginary

B

z is purely real

C

z = 0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the determinant of the given 3x3 matrix: \[ z = \begin{vmatrix} 1 & 1-2i & 3+5i \\ 1+2i & -5 & 10i \\ 3-5i & -10i & 11 \end{vmatrix} \] ### Step 1: Calculate the determinant using cofactor expansion We can expand the determinant along the first row: \[ z = 1 \cdot \begin{vmatrix} -5 & 10i \\ -10i & 11 \end{vmatrix} - (1-2i) \cdot \begin{vmatrix} 1+2i & 10i \\ 3-5i & 11 \end{vmatrix} + (3+5i) \cdot \begin{vmatrix} 1+2i & -5 \\ 3-5i & -10i \end{vmatrix} \] ### Step 2: Calculate the first 2x2 determinant \[ \begin{vmatrix} -5 & 10i \\ -10i & 11 \end{vmatrix} = (-5)(11) - (10i)(-10i) = -55 + 100 = 45 \] ### Step 3: Calculate the second 2x2 determinant \[ \begin{vmatrix} 1+2i & 10i \\ 3-5i & 11 \end{vmatrix} = (1+2i)(11) - (10i)(3-5i) = 11 + 22i - (30i - 50) = 11 + 22i - 30i + 50 = 61 - 8i \] ### Step 4: Calculate the third 2x2 determinant \[ \begin{vmatrix} 1+2i & -5 \\ 3-5i & -10i \end{vmatrix} = (1+2i)(-10i) - (-5)(3-5i) = -10i - 20i^2 + 15 - 25i = -10i + 20 + 15 - 25i = 35 - 35i \] ### Step 5: Substitute the determinants back into the expression for z Now substituting back into the expression for \( z \): \[ z = 1 \cdot 45 - (1-2i)(61-8i) + (3+5i)(35-35i) \] ### Step 6: Simplify the expression Calculating each term: 1. The first term is \( 45 \). 2. The second term: \[ (1-2i)(61-8i) = 61 - 8i - 122i + 16i^2 = 61 - 130i - 16 = 45 - 130i \] So, \( - (1-2i)(61-8i) = -45 + 130i \). 3. The third term: \[ (3+5i)(35-35i) = 105 - 105i + 175i - 175i^2 = 105 + 70i + 175 = 280 + 70i \] ### Step 7: Combine all the terms Now we combine all the terms: \[ z = 45 - 45 + 280 + (130i + 70i) = 280 + 200i \] ### Step 8: Analyze the result The final result is \( z = 280 + 200i \). ### Conclusion Since the imaginary part is not zero, \( z \) is not purely real. However, it has both real and imaginary parts.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If z = |{:(1 , 1 + 2i, - 5i),(1 - 2i,-3,5+3i),(5i,5-3i,7):}| , then (i= sqrt(-1))

If z=|(1+i, 5+2i, 3-2i),(7i, -3i, 5i),(1-i, 5-2i, 3+2i)| then (A) z is purely real imaginary (B) z is purely real (C) z has equal real and imaginary parts (D) z has positive real and imaginary parts.

If z=|{:(3+2i,5-i,7-3i),(i,2i,-3i),(3-2i,5+i,7+3i):}|,"where "i=sqrt(-1),"then"

If a,b,c, are real numbers,and a=det[[a,1+2i,3-5i1-2i,b,-7-3i3+5i,-7+3i,c]] then D is

" If "z=((1+i)(1+2i)(1+3i))/((1-i)(2-i)(3-i))" then the principal argument of "z"

If (1-i)(1-2i)(1-3i)…..(1-ni)=x-iy , then 2.5.10 ……(1+n^2)=

Let z=((1+i)^(2))/(a-i),(a>0) and |z|=sqrt((2)/(5)) then z is equal to

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -SOLVED EXAMPLES LEVEL 1
  1. Let z1 and z2 be two non - zero complex numbers such that z1/z2+z2/z...

    Text Solution

    |

  2. If (1+x+x^2)^n=a0+a1x+a2x^2++a(2n)x(2n), find the value of a0+a6++ ,n ...

    Text Solution

    |

  3. Let z = |(1,1-2i,3+5i),(1+2i,-5,10i),(3-5i,-10i,11)|, then

    Text Solution

    |

  4. if (x+i y)^(1/3) = a+ib then (x/a) + (y/b) equals to

    Text Solution

    |

  5. If z epsilon C, the minimum value of |z| + |z-i| is attained at

    Text Solution

    |

  6. For all complex numbers z1, z2 satisfying |z1| =12 and |z2-3-4i|=5, ...

    Text Solution

    |

  7. If z lies on the circle |z-1|=1, then (z-2)/z is

    Text Solution

    |

  8. If 1, omega, ......,omega^(n-1) are the n^(th) roots of unity,then va...

    Text Solution

    |

  9. If omega = "cos"(pi)/(n) + "i sin" (pi)/(n), then value of 1 + omega +...

    Text Solution

    |

  10. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  11. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  12. If |z^2-1|=|z|^2+1, then z lies on (a) a circle (b) the imaginar...

    Text Solution

    |

  13. If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+...

    Text Solution

    |

  14. If |z""+""4|lt=3 , then the maximum value of |z""+""1| is (1) 4...

    Text Solution

    |

  15. Let z,w be complex numbers such that barz+ibarw=0 and arg zw=pi Then a...

    Text Solution

    |

  16. If z(1) + z(2) + z(3) = 0 and |z(1)| = |z(2)| = |z(3)| = 1, then value...

    Text Solution

    |

  17. If z satisfies the relation |z-i|z||=|z+i|z|| then

    Text Solution

    |

  18. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  19. Let z be not a real number such that (1+z+z^2)//(1-z+z^2) in R , then...

    Text Solution

    |

  20. If |z-4/z| = 2 , then the maximum value of |z|

    Text Solution

    |