Home
Class 12
MATHS
If omega = "cos"(pi)/(n) + "i sin" (pi)/...

If `omega = "cos"(pi)/(n) + "i sin" (pi)/(n)`, then value of `1 + omega + omega^(2) +...+omega^(n-1)` is

A

`1 + i cot ((pi)/(2pi))`

B

`1 + i tan ((pi)/(n))`

C

1 + i

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the sum \( S = 1 + \omega + \omega^2 + \ldots + \omega^{n-1} \) where \( \omega = \cos\left(\frac{\pi}{n}\right) + i \sin\left(\frac{\pi}{n}\right) \). ### Step-by-Step Solution: 1. **Identify the Formula for the Sum of a Geometric Series**: The sum of a geometric series can be expressed as: \[ S = \frac{a(1 - r^n)}{1 - r} \] where \( a \) is the first term and \( r \) is the common ratio. In our case, \( a = 1 \) and \( r = \omega \). 2. **Substituting Values into the Formula**: Substituting \( a \) and \( r \) into the formula, we get: \[ S = \frac{1(1 - \omega^n)}{1 - \omega} = \frac{1 - \omega^n}{1 - \omega} \] 3. **Calculate \( \omega^n \)**: We know that: \[ \omega = e^{i\frac{\pi}{n}} \] Therefore, \[ \omega^n = \left(e^{i\frac{\pi}{n}}\right)^n = e^{i\pi} = -1 \] 4. **Substituting \( \omega^n \) Back into the Sum**: Now substituting \( \omega^n \) back into the equation for \( S \): \[ S = \frac{1 - (-1)}{1 - \omega} = \frac{1 + 1}{1 - \omega} = \frac{2}{1 - \omega} \] 5. **Simplifying \( 1 - \omega \)**: We have: \[ 1 - \omega = 1 - \left(\cos\left(\frac{\pi}{n}\right) + i \sin\left(\frac{\pi}{n}\right)\right) = 1 - \cos\left(\frac{\pi}{n}\right) - i \sin\left(\frac{\pi}{n}\right) \] 6. **Finding the Magnitude of \( 1 - \omega \)**: The magnitude of \( 1 - \omega \) can be calculated as: \[ |1 - \omega| = \sqrt{(1 - \cos\left(\frac{\pi}{n}\right))^2 + \sin^2\left(\frac{\pi}{n}\right)} \] Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ |1 - \omega| = \sqrt{2 - 2\cos\left(\frac{\pi}{n}\right)} = 2\sin\left(\frac{\pi}{2n}\right) \] 7. **Final Expression for \( S \)**: Thus, we can write: \[ S = \frac{2}{1 - \omega} = \frac{2}{\sqrt{2 - 2\cos\left(\frac{\pi}{n}\right)}} \] Simplifying further gives: \[ S = \frac{2}{2\sin\left(\frac{\pi}{2n}\right)} = \frac{1}{\sin\left(\frac{\pi}{2n}\right)} \] 8. **Conclusion**: Therefore, the final value of the sum \( S \) is: \[ S = \frac{2}{1 - \omega} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

The value of (i)^i is omega -omega^(2) pi/3 none

If w=cos""(pi)/(n)+isin""(pi)/(n) then value of 1+w+w^(2)+.......+w^(n-1) is :

Let omega_(n)=cos((2 pi)/(n))+i sin((2 pi)/(n)),i^(2)=-1 then (x+y omega_(3)+z omega_(3)^(2))(x+y omega_(3)^(2)+z omega_(3))=

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -SOLVED EXAMPLES LEVEL 1
  1. If z lies on the circle |z-1|=1, then (z-2)/z is

    Text Solution

    |

  2. If 1, omega, ......,omega^(n-1) are the n^(th) roots of unity,then va...

    Text Solution

    |

  3. If omega = "cos"(pi)/(n) + "i sin" (pi)/(n), then value of 1 + omega +...

    Text Solution

    |

  4. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  5. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  6. If |z^2-1|=|z|^2+1, then z lies on (a) a circle (b) the imaginar...

    Text Solution

    |

  7. If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+...

    Text Solution

    |

  8. If |z""+""4|lt=3 , then the maximum value of |z""+""1| is (1) 4...

    Text Solution

    |

  9. Let z,w be complex numbers such that barz+ibarw=0 and arg zw=pi Then a...

    Text Solution

    |

  10. If z(1) + z(2) + z(3) = 0 and |z(1)| = |z(2)| = |z(3)| = 1, then value...

    Text Solution

    |

  11. If z satisfies the relation |z-i|z||=|z+i|z|| then

    Text Solution

    |

  12. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  13. Let z be not a real number such that (1+z+z^2)//(1-z+z^2) in R , then...

    Text Solution

    |

  14. If |z-4/z| = 2 , then the maximum value of |z|

    Text Solution

    |

  15. If |omega|=2, then the set of points z=omega-1/omega is contained in o...

    Text Solution

    |

  16. If |z| = 1, z ne 1, then value of arg ((1)/(1-z)) cannot exceed

    Text Solution

    |

  17. If z ne 1 and (z^(2))/(z-1) is real, the point represented by the comp...

    Text Solution

    |

  18. If 3^(49)(x+i y)=(3/2+(sqrt(3))/2I)^(100) and x=k y then k is: -1//3 b...

    Text Solution

    |

  19. If (4+i)(z+bar(z))-(3+i)(z-bar(z))+26i = 0, then the value of |z|^(2) ...

    Text Solution

    |

  20. Let z = a("cos"(pi)/(5) + "i sin" (pi)/(5)),a in R, |a| lt 1, then S =...

    Text Solution

    |