Home
Class 12
MATHS
If z(1) + z(2) + z(3) = 0 and |z(1)| = |...

If `z_(1) + z_(2) + z_(3) = 0 and |z_(1)| = |z_(2)| = |z_(3)| = 1`, then value of `z_(1)^(2) + z_(2)^(2) + z_(3)^(2)` equals

A

-1

B

0

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( z_1^2 + z_2^2 + z_3^2 \) given that \( z_1 + z_2 + z_3 = 0 \) and \( |z_1| = |z_2| = |z_3| = 1 \). ### Step-by-Step Solution: 1. **Use the Given Condition**: We know that \( z_1 + z_2 + z_3 = 0 \). This implies that \( z_3 = - (z_1 + z_2) \). **Hint**: Substitute \( z_3 \) in terms of \( z_1 \) and \( z_2 \). 2. **Square the Expression**: We want to find \( z_1^2 + z_2^2 + z_3^2 \). We can use the identity: \[ z_1^2 + z_2^2 + z_3^2 = (z_1 + z_2 + z_3)^2 - 2(z_1 z_2 + z_2 z_3 + z_3 z_1) \] Since \( z_1 + z_2 + z_3 = 0 \), we have: \[ z_1^2 + z_2^2 + z_3^2 = 0^2 - 2(z_1 z_2 + z_2 z_3 + z_3 z_1) = -2(z_1 z_2 + z_2 z_3 + z_3 z_1) \] **Hint**: Use the identity for the square of a sum to relate it to the product of the terms. 3. **Calculate the Magnitudes**: Given that \( |z_1| = |z_2| = |z_3| = 1 \), we can express: \[ z_1 \overline{z_1} = 1, \quad z_2 \overline{z_2} = 1, \quad z_3 \overline{z_3} = 1 \] Thus, \( \overline{z_1} = \frac{1}{z_1} \), \( \overline{z_2} = \frac{1}{z_2} \), \( \overline{z_3} = \frac{1}{z_3} \). **Hint**: Use the property of complex conjugates and magnitudes. 4. **Substitute Back**: Now, we can substitute \( z_3 = - (z_1 + z_2) \) into the product terms: \[ z_1 z_2 + z_2 z_3 + z_3 z_1 = z_1 z_2 + z_2(- (z_1 + z_2)) + (- (z_1 + z_2))z_1 \] Simplifying this gives: \[ z_1 z_2 - z_1 z_2 - z_2^2 - z_1^2 - z_1 z_2 = - (z_1^2 + z_2^2 + z_1 z_2) \] **Hint**: Carefully expand and simplify the products. 5. **Final Calculation**: We substitute back into our equation: \[ z_1^2 + z_2^2 + z_3^2 = -2(- (z_1^2 + z_2^2 + z_1 z_2)) = 2(z_1^2 + z_2^2 + z_1 z_2) \] Since \( z_1 + z_2 + z_3 = 0 \), we can conclude that: \[ z_1^2 + z_2^2 + z_3^2 = 0 \] ### Conclusion: Thus, the value of \( z_1^2 + z_2^2 + z_3^2 \) is \( \boxed{0} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

Let z_(1)z_(2),z_(3), be three complex number such that z_(1)+z_(2)+z_(3)=0 and |z_(1)|=|z_(2)|=|z_(3)|=1 then Let |z_(1)^(2)+2z_(2)^(2)+z_(3)^(2)| equals

If |z_(1)|=1,|z_(2)|=2, then value of |z_(1)+z_(2)|^(2)+|z_(1)-z^(2)|^(2) is equal to

If complex numbers z_(1)z_(2) and z_(3) are such that |z_(1)| = |z_(2)| = |z_(3)| , then prove that arg((z_(2))/(z_(1)) = arg ((z_(2) - z_(3))/(z_(1) - z_(3)))^(2)

If |z_(1)| = |z_(2)| = |z_(3)| = 1 and z_(1) + z_(2) + z_(3) = sqrt(2) + i , then the number z_(1)bar(z)_(2)+z_(2)bar(z)_(3) + z_(3)bar(z)_(1) is :

If z_(1),z_(2),z_(3) are three complex numbers, such that |z_(1)|=|z_(2)|=|z_(3)|=1 & z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0 then |z_(1)^(3)+z_(2)^(3)+z_(3)^(3)| is equal to _______. (not equal to 1)

If |z_(1)|=2.|z_(2)|=3.|z_(3)|=4and|z_(1),+z_(2)+z_(3)|=2, then the value of |4z_(2)z_(3)+9z_(3)z_(1)+16z_(1)z_(2)|

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -SOLVED EXAMPLES LEVEL 1
  1. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If |z^2-1|=|z|^2+1, then z lies on (a) a circle (b) the imaginar...

    Text Solution

    |

  4. If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+...

    Text Solution

    |

  5. If |z""+""4|lt=3 , then the maximum value of |z""+""1| is (1) 4...

    Text Solution

    |

  6. Let z,w be complex numbers such that barz+ibarw=0 and arg zw=pi Then a...

    Text Solution

    |

  7. If z(1) + z(2) + z(3) = 0 and |z(1)| = |z(2)| = |z(3)| = 1, then value...

    Text Solution

    |

  8. If z satisfies the relation |z-i|z||=|z+i|z|| then

    Text Solution

    |

  9. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  10. Let z be not a real number such that (1+z+z^2)//(1-z+z^2) in R , then...

    Text Solution

    |

  11. If |z-4/z| = 2 , then the maximum value of |z|

    Text Solution

    |

  12. If |omega|=2, then the set of points z=omega-1/omega is contained in o...

    Text Solution

    |

  13. If |z| = 1, z ne 1, then value of arg ((1)/(1-z)) cannot exceed

    Text Solution

    |

  14. If z ne 1 and (z^(2))/(z-1) is real, the point represented by the comp...

    Text Solution

    |

  15. If 3^(49)(x+i y)=(3/2+(sqrt(3))/2I)^(100) and x=k y then k is: -1//3 b...

    Text Solution

    |

  16. If (4+i)(z+bar(z))-(3+i)(z-bar(z))+26i = 0, then the value of |z|^(2) ...

    Text Solution

    |

  17. Let z = a("cos"(pi)/(5) + "i sin" (pi)/(5)),a in R, |a| lt 1, then S =...

    Text Solution

    |

  18. If z = sqrt(20i - 21) + sqrt(20i + 21), than one of the possible value...

    Text Solution

    |

  19. If (a+bi)^(11) = x + iy, where a, b, x, y in R, then (b + ai)^(11) equ...

    Text Solution

    |

  20. If a, b, x, y in R, omega ne 1, is a cube root of unity and (a + b ome...

    Text Solution

    |