Home
Class 12
MATHS
If |z| = 1, z ne 1, then value of arg ((...

If `|z| = 1, z ne 1`, then value of arg `((1)/(1-z))` cannot exceed

A

`pi//2`

B

`pi`

C

`3pi//2`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the argument of the complex number \(\frac{1}{1-z}\) given that \(|z| = 1\) and \(z \neq 1\). ### Step-by-Step Solution: 1. **Understanding the Condition**: Since \(|z| = 1\), we can express \(z\) in terms of its polar form: \[ z = e^{i\theta} \] where \(\theta\) is the argument of \(z\). 2. **Substituting \(z\)**: We substitute \(z\) into the expression \(\frac{1}{1-z}\): \[ \frac{1}{1-z} = \frac{1}{1 - e^{i\theta}} \] 3. **Finding the Denominator**: To simplify this expression, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{1 - e^{i\theta}} \cdot \frac{1 - e^{-i\theta}}{1 - e^{-i\theta}} = \frac{1 - e^{-i\theta}}{(1 - e^{i\theta})(1 - e^{-i\theta})} \] 4. **Calculating the Denominator**: The denominator simplifies as follows: \[ (1 - e^{i\theta})(1 - e^{-i\theta}) = 1 - (e^{i\theta} + e^{-i\theta}) + 1 = 2 - 2\cos(\theta) = 2(1 - \cos(\theta)) \] 5. **Expressing the Result**: Thus, we have: \[ \frac{1}{1 - z} = \frac{1 - e^{-i\theta}}{2(1 - \cos(\theta))} \] 6. **Finding the Argument**: The argument of \(\frac{1 - e^{-i\theta}}{2(1 - \cos(\theta))}\) can be expressed as: \[ \arg\left(1 - e^{-i\theta}\right) - \arg\left(2(1 - \cos(\theta))\right) \] Since \(2(1 - \cos(\theta))\) is a positive real number, its argument is \(0\). 7. **Calculating \(\arg(1 - e^{-i\theta})\)**: We need to find \(\arg(1 - e^{-i\theta})\): \[ 1 - e^{-i\theta} = 1 - (\cos(\theta) - i\sin(\theta)) = (1 - \cos(\theta)) + i\sin(\theta) \] The argument is given by: \[ \tan^{-1}\left(\frac{\sin(\theta)}{1 - \cos(\theta)}\right) \] 8. **Using Trigonometric Identities**: We can use the identity \(1 - \cos(\theta) = 2\sin^2(\frac{\theta}{2})\) to rewrite: \[ \tan^{-1}\left(\frac{\sin(\theta)}{2\sin^2(\frac{\theta}{2})}\right) = \tan^{-1}\left(\frac{2\sin(\frac{\theta}{2})\cos(\frac{\theta}{2})}{2\sin^2(\frac{\theta}{2})}\right) = \tan^{-1}\left(\cot(\frac{\theta}{2})\right) \] 9. **Finding Maximum Value**: The maximum value of \(\tan^{-1}(\cot(\frac{\theta}{2}))\) approaches \(\frac{\pi}{2}\) as \(\theta\) approaches \(0\) or \(2\pi\), but since \(z \neq 1\), \(\theta\) cannot be exactly \(0\). 10. **Conclusion**: Therefore, the maximum value of \(\arg\left(\frac{1}{1-z}\right)\) cannot exceed \(\frac{\pi}{2}\). ### Final Answer: The value of \(\arg\left(\frac{1}{1-z}\right)\) cannot exceed \(\frac{\pi}{2}\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If Re(z)<0 then the value of (1+z+z^(2)+....+z^(n)) cannot exceed

If z_1 = 3i and z_2 = -1 -i , find the value of arg z_1/z_2 .

Find the locus of z if arg ((z-1)/(z+1))= pi/4

If z=-1 then principal value of arg(z^((2)/(3))) is equal to

If |z|=1 and z ne +-1 , then one of the possible value of arg(z)-arg(z+1)-arg(z-1) , is

Complex numbers z_(1) and z_(2) lie on the rays arg(z1) =theta and arg(z1) =-theta such that |z_(1)|=|z_(2)| . Further, image of z_(1) in y-axis is z_(3) . Then, the value of arg (z_(1)z_(3)) is equal to

If |z^(3)+(1)/(z^(3))|<=2 then |z+(1)/(z)| cannot exceed

If |z^(3)+(1)/(z^(3))|<=2 then |z+(1)/(z)| cannot exceed

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -SOLVED EXAMPLES LEVEL 1
  1. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If |z^2-1|=|z|^2+1, then z lies on (a) a circle (b) the imaginar...

    Text Solution

    |

  4. If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+...

    Text Solution

    |

  5. If |z""+""4|lt=3 , then the maximum value of |z""+""1| is (1) 4...

    Text Solution

    |

  6. Let z,w be complex numbers such that barz+ibarw=0 and arg zw=pi Then a...

    Text Solution

    |

  7. If z(1) + z(2) + z(3) = 0 and |z(1)| = |z(2)| = |z(3)| = 1, then value...

    Text Solution

    |

  8. If z satisfies the relation |z-i|z||=|z+i|z|| then

    Text Solution

    |

  9. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  10. Let z be not a real number such that (1+z+z^2)//(1-z+z^2) in R , then...

    Text Solution

    |

  11. If |z-4/z| = 2 , then the maximum value of |z|

    Text Solution

    |

  12. If |omega|=2, then the set of points z=omega-1/omega is contained in o...

    Text Solution

    |

  13. If |z| = 1, z ne 1, then value of arg ((1)/(1-z)) cannot exceed

    Text Solution

    |

  14. If z ne 1 and (z^(2))/(z-1) is real, the point represented by the comp...

    Text Solution

    |

  15. If 3^(49)(x+i y)=(3/2+(sqrt(3))/2I)^(100) and x=k y then k is: -1//3 b...

    Text Solution

    |

  16. If (4+i)(z+bar(z))-(3+i)(z-bar(z))+26i = 0, then the value of |z|^(2) ...

    Text Solution

    |

  17. Let z = a("cos"(pi)/(5) + "i sin" (pi)/(5)),a in R, |a| lt 1, then S =...

    Text Solution

    |

  18. If z = sqrt(20i - 21) + sqrt(20i + 21), than one of the possible value...

    Text Solution

    |

  19. If (a+bi)^(11) = x + iy, where a, b, x, y in R, then (b + ai)^(11) equ...

    Text Solution

    |

  20. If a, b, x, y in R, omega ne 1, is a cube root of unity and (a + b ome...

    Text Solution

    |