Home
Class 12
MATHS
If (4+i)(z+bar(z))-(3+i)(z-bar(z))+26i =...

If `(4+i)(z+bar(z))-(3+i)(z-bar(z))+26i = 0`, then the value of `|z|^(2)` is

A

13

B

17

C

19

D

11

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((4+i)(z+\bar{z})-(3+i)(z-\bar{z})+26i = 0\) and find the value of \(|z|^2\), we will follow these steps: ### Step 1: Substitute \( z \) and \( \bar{z} \) Let \( z = x + iy \) where \( x \) and \( y \) are real numbers. Then, the conjugate \( \bar{z} = x - iy \). ### Step 2: Express \( z + \bar{z} \) and \( z - \bar{z} \) We can express: - \( z + \bar{z} = (x + iy) + (x - iy) = 2x \) - \( z - \bar{z} = (x + iy) - (x - iy) = 2iy \) ### Step 3: Substitute into the equation Now substitute these into the original equation: \[ (4+i)(2x) - (3+i)(2iy) + 26i = 0 \] This simplifies to: \[ (8x + 2ix) - (6iy + 2y) + 26i = 0 \] ### Step 4: Combine real and imaginary parts Now, combine the real and imaginary parts: - Real part: \( 8x - 2y \) - Imaginary part: \( 2x - 6y + 26 \) Thus, we have: \[ 8x - 2y + (2x - 6y + 26)i = 0 \] ### Step 5: Set real and imaginary parts to zero For the equation to hold, both the real and imaginary parts must equal zero: 1. \( 8x - 2y = 0 \) (1) 2. \( 2x - 6y + 26 = 0 \) (2) ### Step 6: Solve the system of equations From equation (1): \[ 2y = 8x \implies y = 4x \] Substituting \( y = 4x \) into equation (2): \[ 2x - 6(4x) + 26 = 0 \] This simplifies to: \[ 2x - 24x + 26 = 0 \implies -22x + 26 = 0 \implies 22x = 26 \implies x = \frac{26}{22} = \frac{13}{11} \] Now substituting back to find \( y \): \[ y = 4x = 4 \cdot \frac{13}{11} = \frac{52}{11} \] ### Step 7: Find \(|z|^2\) Now we can find \(|z|^2\): \[ |z|^2 = x^2 + y^2 = \left(\frac{13}{11}\right)^2 + \left(\frac{52}{11}\right)^2 \] Calculating each term: \[ |z|^2 = \frac{169}{121} + \frac{2704}{121} = \frac{169 + 2704}{121} = \frac{2873}{121} \] ### Final Answer Thus, the value of \(|z|^2\) is: \[ \boxed{\frac{2873}{121}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If (7+i)(z + bar(z))-(4+i)(z-bar(z)) + 116i = 0 then z bar(z) is equal to ______________.

If (4z_(1))/(9z_(2))+(4bar(z_(1)))/(9bar(z_(2)))=0, then the value of |(z_(1)-z_(2))/(z_(1)+z_(2))| is

If z_(1) = 3+4i and z_(2) = 2+i , and z satisfy the equation 2(z+bar(z)) + 3(z-bar(z))i = 0 , Then for Minimum value of |z-z_(1)| + |z-z_(2)| , possible value of z can be

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

IF S = {z in C : bar(z) = iz^(2)} , then the maximum value of |z - sqrt(3) - i |^(2) in S is ________

If ((1+i) z= (1-i))bar(z), then

z bar(z)+(3-i)z+(3+i)bar(z)+1=0 represents a circle with

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -SOLVED EXAMPLES LEVEL 1
  1. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If |z^2-1|=|z|^2+1, then z lies on (a) a circle (b) the imaginar...

    Text Solution

    |

  4. If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+...

    Text Solution

    |

  5. If |z""+""4|lt=3 , then the maximum value of |z""+""1| is (1) 4...

    Text Solution

    |

  6. Let z,w be complex numbers such that barz+ibarw=0 and arg zw=pi Then a...

    Text Solution

    |

  7. If z(1) + z(2) + z(3) = 0 and |z(1)| = |z(2)| = |z(3)| = 1, then value...

    Text Solution

    |

  8. If z satisfies the relation |z-i|z||=|z+i|z|| then

    Text Solution

    |

  9. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  10. Let z be not a real number such that (1+z+z^2)//(1-z+z^2) in R , then...

    Text Solution

    |

  11. If |z-4/z| = 2 , then the maximum value of |z|

    Text Solution

    |

  12. If |omega|=2, then the set of points z=omega-1/omega is contained in o...

    Text Solution

    |

  13. If |z| = 1, z ne 1, then value of arg ((1)/(1-z)) cannot exceed

    Text Solution

    |

  14. If z ne 1 and (z^(2))/(z-1) is real, the point represented by the comp...

    Text Solution

    |

  15. If 3^(49)(x+i y)=(3/2+(sqrt(3))/2I)^(100) and x=k y then k is: -1//3 b...

    Text Solution

    |

  16. If (4+i)(z+bar(z))-(3+i)(z-bar(z))+26i = 0, then the value of |z|^(2) ...

    Text Solution

    |

  17. Let z = a("cos"(pi)/(5) + "i sin" (pi)/(5)),a in R, |a| lt 1, then S =...

    Text Solution

    |

  18. If z = sqrt(20i - 21) + sqrt(20i + 21), than one of the possible value...

    Text Solution

    |

  19. If (a+bi)^(11) = x + iy, where a, b, x, y in R, then (b + ai)^(11) equ...

    Text Solution

    |

  20. If a, b, x, y in R, omega ne 1, is a cube root of unity and (a + b ome...

    Text Solution

    |