Home
Class 12
MATHS
Let z = a("cos"(pi)/(5) + "i sin" (pi)/(...

Let `z = a("cos"(pi)/(5) + "i sin" (pi)/(5)),a in R, |a| lt 1`, then `S = z^(2015) + z^(2016) + z^(2017) + ...` equals

A

`(a^(2015))/(z-1)`

B

`(a^(2015))/(1-z)`

C

`(a^(2015))/(1-a)`

D

`(a^(2015))/(a-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the complex number given by: \[ z = a \left( \cos\left(\frac{\pi}{5}\right) + i \sin\left(\frac{\pi}{5}\right) \right) \] where \( a \in \mathbb{R} \) and \( |a| < 1 \). We need to find the sum: \[ S = z^{2015} + z^{2016} + z^{2017} + \ldots \] ### Step 1: Identify the series as a geometric series The series \( S \) can be recognized as an infinite geometric series where the first term \( a_1 = z^{2015} \) and the common ratio \( r = z \). ### Step 2: Use the formula for the sum of an infinite geometric series The formula for the sum of an infinite geometric series is given by: \[ S = \frac{a_1}{1 - r} \] where \( |r| < 1 \). Here, we have: \[ S = \frac{z^{2015}}{1 - z} \] ### Step 3: Substitute \( z \) into the formula Now, we need to express \( z^{2015} \): \[ z^{2015} = \left( a \left( \cos\left(\frac{\pi}{5}\right) + i \sin\left(\frac{\pi}{5}\right) \right) \right)^{2015} \] Using Euler's formula, we can write: \[ z = a e^{i \frac{\pi}{5}} \] Thus, \[ z^{2015} = a^{2015} e^{i \frac{2015 \pi}{5}} = a^{2015} e^{i 403 \pi} = a^{2015} e^{i \pi} = -a^{2015} \] ### Step 4: Substitute \( z^{2015} \) back into the sum formula Now we substitute \( z^{2015} \) back into the sum \( S \): \[ S = \frac{-a^{2015}}{1 - z} \] ### Step 5: Calculate \( 1 - z \) We have: \[ 1 - z = 1 - a \left( \cos\left(\frac{\pi}{5}\right) + i \sin\left(\frac{\pi}{5}\right) \right) \] ### Final Expression for \( S \) Thus, the final expression for the sum \( S \) is: \[ S = \frac{-a^{2015}}{1 - a \left( \cos\left(\frac{\pi}{5}\right) + i \sin\left(\frac{\pi}{5}\right) \right)} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If z=cos((pi)/(4))+i sin((pi)/(6)), then

Let z_(1)=e^((i pi)/(5))

if z = cos ""pi/4 + i sin""pi/6 then

If z=1+cos((pi)/(5))+i sin((pi)/(5)) then sin(argz) is equal to

z=(1-i)/(cos(pi/3)+i sin(pi/3))

z = (1+cos6 pi)+i sin6 pi

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -SOLVED EXAMPLES LEVEL 1
  1. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If |z^2-1|=|z|^2+1, then z lies on (a) a circle (b) the imaginar...

    Text Solution

    |

  4. If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+...

    Text Solution

    |

  5. If |z""+""4|lt=3 , then the maximum value of |z""+""1| is (1) 4...

    Text Solution

    |

  6. Let z,w be complex numbers such that barz+ibarw=0 and arg zw=pi Then a...

    Text Solution

    |

  7. If z(1) + z(2) + z(3) = 0 and |z(1)| = |z(2)| = |z(3)| = 1, then value...

    Text Solution

    |

  8. If z satisfies the relation |z-i|z||=|z+i|z|| then

    Text Solution

    |

  9. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  10. Let z be not a real number such that (1+z+z^2)//(1-z+z^2) in R , then...

    Text Solution

    |

  11. If |z-4/z| = 2 , then the maximum value of |z|

    Text Solution

    |

  12. If |omega|=2, then the set of points z=omega-1/omega is contained in o...

    Text Solution

    |

  13. If |z| = 1, z ne 1, then value of arg ((1)/(1-z)) cannot exceed

    Text Solution

    |

  14. If z ne 1 and (z^(2))/(z-1) is real, the point represented by the comp...

    Text Solution

    |

  15. If 3^(49)(x+i y)=(3/2+(sqrt(3))/2I)^(100) and x=k y then k is: -1//3 b...

    Text Solution

    |

  16. If (4+i)(z+bar(z))-(3+i)(z-bar(z))+26i = 0, then the value of |z|^(2) ...

    Text Solution

    |

  17. Let z = a("cos"(pi)/(5) + "i sin" (pi)/(5)),a in R, |a| lt 1, then S =...

    Text Solution

    |

  18. If z = sqrt(20i - 21) + sqrt(20i + 21), than one of the possible value...

    Text Solution

    |

  19. If (a+bi)^(11) = x + iy, where a, b, x, y in R, then (b + ai)^(11) equ...

    Text Solution

    |

  20. If a, b, x, y in R, omega ne 1, is a cube root of unity and (a + b ome...

    Text Solution

    |