Home
Class 12
MATHS
Let z(k) = cos ((2kpi)/(7))+i sin((2kpi)...

Let `z_(k) = cos ((2kpi)/(7))+i sin((2kpi)/(7)),"for k" = 1, 2, ..., 6`, then `log_(7)|1-z_(1)|+log_(7)|1-z_(2)|+....+ log_(7)|1-z_(6)| ` is equal to ________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \log_{7}|1 - z_{1}| + \log_{7}|1 - z_{2}| + \ldots + \log_{7}|1 - z_{6}| \] where \[ z_{k} = \cos\left(\frac{2k\pi}{7}\right) + i \sin\left(\frac{2k\pi}{7}\right) \quad \text{for } k = 1, 2, \ldots, 6. \] ### Step 1: Identify the values of \( z_k \) The values of \( z_k \) are the 7th roots of unity (excluding \( z_0 = 1 \)). Specifically, we have: - \( z_1 = e^{i \frac{2\pi}{7}} \) - \( z_2 = e^{i \frac{4\pi}{7}} \) - \( z_3 = e^{i \frac{6\pi}{7}} \) - \( z_4 = e^{i \frac{8\pi}{7}} \) - \( z_5 = e^{i \frac{10\pi}{7}} \) - \( z_6 = e^{i \frac{12\pi}{7}} \) ### Step 2: Calculate \( |1 - z_k| \) The magnitude \( |1 - z_k| \) can be calculated using the formula: \[ |1 - z_k| = |1 - e^{i \frac{2k\pi}{7}}| = \sqrt{(1 - \cos\left(\frac{2k\pi}{7}\right))^2 + \sin^2\left(\frac{2k\pi}{7}\right)} \] Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ |1 - z_k| = \sqrt{(1 - \cos\left(\frac{2k\pi}{7}\right))^2 + (1 - \cos^2\left(\frac{2k\pi}{7}\right))} \] This simplifies to: \[ |1 - z_k| = \sqrt{2 - 2\cos\left(\frac{2k\pi}{7}\right)} = 2\sin\left(\frac{k\pi}{7}\right) \] ### Step 3: Calculate \( \log_{7}|1 - z_k| \) Now we can express the logarithm: \[ \log_{7}|1 - z_k| = \log_{7}(2\sin\left(\frac{k\pi}{7}\right)) \] ### Step 4: Sum the logarithms We need to sum these logarithms: \[ \sum_{k=1}^{6} \log_{7}|1 - z_k| = \sum_{k=1}^{6} \log_{7}(2\sin\left(\frac{k\pi}{7}\right)) \] Using the property of logarithms, we can separate the terms: \[ = \sum_{k=1}^{6} \left(\log_{7}(2) + \log_{7}(\sin\left(\frac{k\pi}{7}\right))\right) \] This can be simplified as: \[ = 6\log_{7}(2) + \sum_{k=1}^{6} \log_{7}(\sin\left(\frac{k\pi}{7}\right)) \] ### Step 5: Evaluate \( \sum_{k=1}^{6} \log_{7}(\sin\left(\frac{k\pi}{7}\right)) \) Using the identity for the product of sine functions: \[ \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}} \] For \( n = 7 \): \[ \prod_{k=1}^{6} \sin\left(\frac{k\pi}{7}\right) = \frac{7}{2^{6}} \] Thus, \[ \sum_{k=1}^{6} \log_{7}(\sin\left(\frac{k\pi}{7}\right)) = \log_{7}\left(\prod_{k=1}^{6} \sin\left(\frac{k\pi}{7}\right)\right) = \log_{7}\left(\frac{7}{2^{6}}\right) \] This can be split as: \[ = \log_{7}(7) - 6\log_{7}(2) = 1 - 6\log_{7}(2) \] ### Step 6: Combine results Now, substituting back into our expression: \[ 6\log_{7}(2) + (1 - 6\log_{7}(2)) = 1 \] ### Final Answer Thus, the final result is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE|20 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 1|55 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 19|1 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

Let z_(k)=cos(2kpi)/10+isin(2kpi)/10,k=1,2,………..,9 . Then, 1/10{|1-z_(1)||1-z_(2)|……|1-z_(9)|} equals

prod_ (k = 1) ^ (6) (sin ((2k pi) / (7)) - i cos ((2k pi) / (7))) =

log_ (1/2) | z-2 |> log_ (1/2) | z |

If z_(k)=cos((k pi)/(10))+i sin((k pi)/(10)), then z_(1)z_(2)z_(3)z_(4) is equal to (A)-1 (B) 2(C)-2 (D) 1

If log_(x)(z)=4,log_(10y)(z)=2 and log(xy)(z)=(4)/(7), then z^(-2) is equal to :

sum_ (k = 1) ^ (6) (sin, (2 pi k) / (7) -i cos, (2 pi k) / (7)) =?

The locus of z such that log_(1/2)|z-1|>log_(1/2)|z-i| is

If z_(1)=5+7i , then |-z_(1)|=|z_(1)| . is True

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS )
  1. Radius of the circle |(z-1)/(z-3i)|=sqrt(2)

    Text Solution

    |

  2. Suppose z(1), z(2), z(3) are vertices of an equilateral triangle with ...

    Text Solution

    |

  3. Let m = Slope of the line |z + 3|^(2) - |z-3i|^(2) = 24, then m + 1.73...

    Text Solution

    |

  4. If omega ne 1 is a cube root of unity, then (1)/(pi) sin^(-1) [(omega^...

    Text Solution

    |

  5. ((1+sqrt(3)i)/(1-sqrt(3)i))^(181) + ((1-sqrt(3)i)/(1+sqrt(3)i))^(181) ...

    Text Solution

    |

  6. Let z(1), z(2) be two complex numbers satisfying the equations |(z-4)/...

    Text Solution

    |

  7. If z is a complex number, then the minimum value of |z - 2.8| + |z - 1...

    Text Solution

    |

  8. If (3 z(1))/(5 z(2)) is purely imaginary, then |(2z(1)-z(2))/(2z(1) + ...

    Text Solution

    |

  9. If omega ne 1 is a complex cube root of unity, then 5.23 + omega + ome...

    Text Solution

    |

  10. If conjugate of a complex number z is (2+5i)/(4-3i), then |Re(z) + Im(...

    Text Solution

    |

  11. Let z be a complex number such that Im(z) ne 0. "If a" = z^(2) + 5z + ...

    Text Solution

    |

  12. Let z(k) = cos ((2kpi)/(7))+i sin((2kpi)/(7)),"for k" = 1, 2, ..., 6, ...

    Text Solution

    |

  13. Let S = {z in C : |z - 2| = |z + 2i| = |z - 2i|} then sum(z in S) |z +...

    Text Solution

    |

  14. Suppose z satisfies the equation z^(2) + z + 1 = 0."Let" omega = (z+(1...

    Text Solution

    |

  15. Suppose omega ne 1 is cube root of unity. If 1(2-omega) (2-omega^(2)) ...

    Text Solution

    |

  16. If z(1) and z(2) are two nonzero complex numbers and theta is a real n...

    Text Solution

    |

  17. Eccentricity of the ellipse |z-4| + |z-4i| = 10 sqrt(2) is

    Text Solution

    |

  18. Suppose a and b are two different complete numbers such that |a + sqrt...

    Text Solution

    |

  19. Suppose z(1), z(2) and z(3) are three distinct complex numbers such th...

    Text Solution

    |

  20. Let P be a point on the circle |z + 2 - 5i| = 6 and A be the point (4 ...

    Text Solution

    |