Home
Class 12
MATHS
Principal argument of z = (i-1)/(i(1-"co...

Principal argument of `z = (i-1)/(i(1-"cos"(2pi)/(7))+"sin"(2pi)/(7))` is

A

`(pi)/(28)`

B

`(3pi)/(28)`

C

`(17 pi)/(28)`

D

`(19 pi)/(28)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the principal argument of the complex number \( z = \frac{i - 1}{i(1 - \cos(\frac{2\pi}{7})) + \sin(\frac{2\pi}{7})} \), we will follow these steps: ### Step 1: Simplify the Denominator First, we need to simplify the denominator: \[ i(1 - \cos(\frac{2\pi}{7})) + \sin(\frac{2\pi}{7}) \] This can be rewritten as: \[ i(1 - \cos(\frac{2\pi}{7})) + \sin(\frac{2\pi}{7}) = \sin(\frac{2\pi}{7}) + i(1 - \cos(\frac{2\pi}{7})) \] ### Step 2: Rewrite \( z \) Now, we can rewrite \( z \): \[ z = \frac{i - 1}{\sin(\frac{2\pi}{7}) + i(1 - \cos(\frac{2\pi}{7}))} \] ### Step 3: Multiply by the Conjugate To simplify \( z \), we multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(i - 1)(\sin(\frac{2\pi}{7}) - i(1 - \cos(\frac{2\pi}{7})))}{(\sin(\frac{2\pi}{7}) + i(1 - \cos(\frac{2\pi}{7})))(\sin(\frac{2\pi}{7}) - i(1 - \cos(\frac{2\pi}{7})))} \] ### Step 4: Calculate the Denominator The denominator simplifies to: \[ \sin^2(\frac{2\pi}{7}) + (1 - \cos(\frac{2\pi}{7}))^2 \] Using the identity \( 1 - \cos^2(x) = \sin^2(x) \), we can express it as: \[ \sin^2(\frac{2\pi}{7}) + (1 - \cos(\frac{2\pi}{7}))^2 = \sin^2(\frac{2\pi}{7}) + (1 - 2\cos(\frac{2\pi}{7}) + \cos^2(\frac{2\pi}{7})) = 1 - 2\cos(\frac{2\pi}{7}) + 1 = 2(1 - \cos(\frac{2\pi}{7})) \] ### Step 5: Calculate the Numerator The numerator simplifies to: \[ (i - 1)(\sin(\frac{2\pi}{7}) - i(1 - \cos(\frac{2\pi}{7})) = i\sin(\frac{2\pi}{7}) - i^2(1 - \cos(\frac{2\pi}{7})) - \sin(\frac{2\pi}{7}) + i \] Since \( i^2 = -1 \), we have: \[ = i\sin(\frac{2\pi}{7}) + (1 - \cos(\frac{2\pi}{7})) - \sin(\frac{2\pi}{7}) = (1 - \cos(\frac{2\pi}{7})) + i\sin(\frac{2\pi}{7}) \] ### Step 6: Combine the Results Now we can write \( z \): \[ z = \frac{(1 - \cos(\frac{2\pi}{7})) + i\sin(\frac{2\pi}{7})}{2(1 - \cos(\frac{2\pi}{7}))} \] This simplifies to: \[ z = \frac{1 - \cos(\frac{2\pi}{7})}{2(1 - \cos(\frac{2\pi}{7}))} + i\frac{\sin(\frac{2\pi}{7})}{2(1 - \cos(\frac{2\pi}{7}))} \] \[ = \frac{1}{2} + i\frac{\sin(\frac{2\pi}{7})}{2(1 - \cos(\frac{2\pi}{7}))} \] ### Step 7: Find the Argument The argument of \( z \) is given by: \[ \text{arg}(z) = \tan^{-1}\left(\frac{\text{Imaginary part}}{\text{Real part}}\right) = \tan^{-1}\left(\frac{\frac{\sin(\frac{2\pi}{7})}{2(1 - \cos(\frac{2\pi}{7})}}{\frac{1}{2}}\right) = \tan^{-1}\left(\frac{\sin(\frac{2\pi}{7})}{1 - \cos(\frac{2\pi}{7})}\right) \] ### Step 8: Use the Tangent Identity Using the identity \( \tan(\theta) = \frac{\sin(\theta)}{1 - \cos(\theta)} \), we have: \[ \text{arg}(z) = \tan^{-1}(\tan(\frac{2\pi}{7})) = \frac{2\pi}{7} \] ### Step 9: Determine the Principal Argument Since the principal argument is typically in the range \( (-\pi, \pi] \), we find: \[ \text{arg}(z) = \frac{2\pi}{7} \] ### Final Answer Thus, the principal argument of \( z \) is: \[ \frac{2\pi}{7} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 1|55 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS )|22 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

Principal argument of z=-1-i sqrt(3)

Find the modulus,argument,and the principal argument of the complex numbers.(i-1)/(i(1-cos((2 pi)/(5)))+(sin(2 pi))/(5))

Write the modulus and principal arguments of the complex no.z=4(cos((pi)/(4))+i sin((pi)/(4)))

Write the principal value of cos^(-1)(cos(2 pi)/(3))+sin^(-1)(sin(2 pi)/(3))

The principal argument of 2z^(2)+1-sqrt(3)i=0

What is the principal value of cos^(-1)cos((2 pi)/(3))+sin^(-1)sin((2 pi)/(3))?

z=(1-i)/(cos(pi/3)+i sin(pi/3))

cos^(-1)(sin((pi)/(7)))

Find Principal Argument of complex no.sin6(pi)/(5)+i(1+cos6(pi)/(5))

Find the principal argument of the complex number sin(6 pi)/(5)+i(1+cos(6 pi)/(5))

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -EXERCISE
  1. The number of complex numbers satisfying (1 + i)z = i|z|

    Text Solution

    |

  2. Suppose a, b, c in R and C lt 0. Let z = a + (b + ic)^(2015) + (b-ic)^...

    Text Solution

    |

  3. The number of solutions of z^(2) + |z| = 0 is

    Text Solution

    |

  4. The equation |((1+i)z-2)/((1+i)z+4)|=k does not represent a circle whe...

    Text Solution

    |

  5. If |z| ge 5, then least value of |z - (1)/(z)| is

    Text Solution

    |

  6. Principal argument of z = (i-1)/(i(1-"cos"(2pi)/(7))+"sin"(2pi)/(7)) i...

    Text Solution

    |

  7. If (x+iy) = sqrt((a+ib)/(c+id)) then prove that (x^2 + y^2)^2 = (a^2 ...

    Text Solution

    |

  8. For any three complex numbers z(1),z(2),z(3), if Delta=|{:(1,z(1),bar(...

    Text Solution

    |

  9. If x, y, a, b in R, a ne 0 and (a + ib) (x + iy) = (a^(2) + b^(2))i, t...

    Text Solution

    |

  10. If omega (ne 1) is a cube root of unity, then the value of tan[(omega^...

    Text Solution

    |

  11. If z is purely imaginary and Im (z) lt 0, then arg(i bar(z)) + arg(z) ...

    Text Solution

    |

  12. The inequality a + ib gt c + id is true when

    Text Solution

    |

  13. Let z in C be such that Re(z^(2)) = 0, then

    Text Solution

    |

  14. If z(1),z(2) and z(3),z(4) are two pairs of conjugate complex numbers ...

    Text Solution

    |

  15. If z = x + iy and 0 le sin^(-1) ((z-4)/(2i)) le (pi)/(2) then

    Text Solution

    |

  16. If a gt 0 and z|z| + az + 3i = 0, then z is

    Text Solution

    |

  17. If z is a complex numbers such that z ne 0 and "Re"(z)=0, then

    Text Solution

    |

  18. If zk=cos((kpi)/10)+isin((kpi)/10), then z1z2z3z4 is equal to

    Text Solution

    |

  19. If |z(1)| = |z(2)| = 1, z(1)z(2) ne -1 and z = (z(1) + z(2))/(1+z(1)z(...

    Text Solution

    |

  20. If z in C, then Re(bar(z)^(2))= k^(2), k gt 0, represents

    Text Solution

    |