Home
Class 12
MATHS
If omega (ne 1) is a cube root of unity,...

If `omega (ne 1)` is a cube root of unity, then the value of `tan[(omega^(2017) + omega^(2225)) pi - pi//3]`

A

`- (1)/(sqrt(3))`

B

`(1)/(sqrt(3))`

C

`- sqrt(3)`

D

`sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan\left[\left(\omega^{2017} + \omega^{2225}\right) \pi - \frac{\pi}{3}\right] \), where \( \omega \) is a cube root of unity (specifically, \( \omega \neq 1 \)). ### Step-by-Step Solution: 1. **Understanding Cube Roots of Unity**: The cube roots of unity are \( 1, \omega, \omega^2 \) where \( \omega = e^{2\pi i / 3} \) and \( \omega^2 = e^{4\pi i / 3} \). They satisfy the equation \( 1 + \omega + \omega^2 = 0 \) and \( \omega^3 = 1 \). 2. **Reducing the Exponents**: Since \( \omega^3 = 1 \), we can reduce the exponents \( 2017 \) and \( 2225 \) modulo \( 3 \): - For \( 2017 \): \[ 2017 \mod 3 = 1 \quad (\text{since } 2017 = 3 \times 672 + 1) \] Thus, \( \omega^{2017} = \omega^1 = \omega \). - For \( 2225 \): \[ 2225 \mod 3 = 1 \quad (\text{since } 2225 = 3 \times 741 + 2) \] Thus, \( \omega^{2225} = \omega^2 \). 3. **Calculating \( \omega^{2017} + \omega^{2225} \)**: Now we can add these results: \[ \omega^{2017} + \omega^{2225} = \omega + \omega^2 \] From the property of cube roots of unity, we know: \[ \omega + \omega^2 = -1 \] 4. **Substituting into the Tangent Function**: We substitute back into the tangent function: \[ \tan\left[\left(\omega^{2017} + \omega^{2225}\right) \pi - \frac{\pi}{3}\right] = \tan\left[-\pi - \frac{\pi}{3}\right] \] Simplifying the angle: \[ -\pi - \frac{\pi}{3} = -\frac{3\pi}{3} - \frac{\pi}{3} = -\frac{4\pi}{3} \] 5. **Using Tangent Properties**: We know that: \[ \tan(-\theta) = -\tan(\theta) \] Therefore: \[ \tan\left(-\frac{4\pi}{3}\right) = -\tan\left(\frac{4\pi}{3}\right) \] The angle \( \frac{4\pi}{3} \) is in the third quadrant, where tangent is positive: \[ \tan\left(\frac{4\pi}{3}\right) = \tan\left(\pi + \frac{\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] Thus: \[ \tan\left(-\frac{4\pi}{3}\right) = -\sqrt{3} \] 6. **Final Result**: Therefore, the value of \( \tan\left[\left(\omega^{2017} + \omega^{2225}\right) \pi - \frac{\pi}{3}\right] \) is: \[ \boxed{-\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 1|55 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS )|22 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega is a cube root of unity then find the value of sin((omega^(10)+omega^(23))-(pi)/(4))

If i=sqrt(-1) and omega is a non-real cube root of unity,then the value of omega-omega^(2)quad 1+iquad omega^(2) is

If omega is a cube root of unity, then tan{(omega^(200)+(1)/(omega^(200)))pi+(pi)/(4)}=

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -EXERCISE
  1. The number of complex numbers satisfying (1 + i)z = i|z|

    Text Solution

    |

  2. Suppose a, b, c in R and C lt 0. Let z = a + (b + ic)^(2015) + (b-ic)^...

    Text Solution

    |

  3. The number of solutions of z^(2) + |z| = 0 is

    Text Solution

    |

  4. The equation |((1+i)z-2)/((1+i)z+4)|=k does not represent a circle whe...

    Text Solution

    |

  5. If |z| ge 5, then least value of |z - (1)/(z)| is

    Text Solution

    |

  6. Principal argument of z = (i-1)/(i(1-"cos"(2pi)/(7))+"sin"(2pi)/(7)) i...

    Text Solution

    |

  7. If (x+iy) = sqrt((a+ib)/(c+id)) then prove that (x^2 + y^2)^2 = (a^2 ...

    Text Solution

    |

  8. For any three complex numbers z(1),z(2),z(3), if Delta=|{:(1,z(1),bar(...

    Text Solution

    |

  9. If x, y, a, b in R, a ne 0 and (a + ib) (x + iy) = (a^(2) + b^(2))i, t...

    Text Solution

    |

  10. If omega (ne 1) is a cube root of unity, then the value of tan[(omega^...

    Text Solution

    |

  11. If z is purely imaginary and Im (z) lt 0, then arg(i bar(z)) + arg(z) ...

    Text Solution

    |

  12. The inequality a + ib gt c + id is true when

    Text Solution

    |

  13. Let z in C be such that Re(z^(2)) = 0, then

    Text Solution

    |

  14. If z(1),z(2) and z(3),z(4) are two pairs of conjugate complex numbers ...

    Text Solution

    |

  15. If z = x + iy and 0 le sin^(-1) ((z-4)/(2i)) le (pi)/(2) then

    Text Solution

    |

  16. If a gt 0 and z|z| + az + 3i = 0, then z is

    Text Solution

    |

  17. If z is a complex numbers such that z ne 0 and "Re"(z)=0, then

    Text Solution

    |

  18. If zk=cos((kpi)/10)+isin((kpi)/10), then z1z2z3z4 is equal to

    Text Solution

    |

  19. If |z(1)| = |z(2)| = 1, z(1)z(2) ne -1 and z = (z(1) + z(2))/(1+z(1)z(...

    Text Solution

    |

  20. If z in C, then Re(bar(z)^(2))= k^(2), k gt 0, represents

    Text Solution

    |