Home
Class 12
MATHS
If z = x + iy and 0 le sin^(-1) ((z-4)/(...

If `z = x + iy and 0 le sin^(-1) ((z-4)/(2i)) le (pi)/(2)` then

A

`x = 4, 0 le y le 2`

B

`0 le x le 4, 0 le y le 2`

C

`x = 0, 0 le y le 2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given inequality involving the complex number \( z = x + iy \) and the expression \( \sin^{-1} \left( \frac{z - 4}{2i} \right) \). ### Step-by-Step Solution: 1. **Understanding the given inequality**: We have: \[ 0 \leq \sin^{-1} \left( \frac{z - 4}{2i} \right) \leq \frac{\pi}{2} \] This means that the expression \( \frac{z - 4}{2i} \) must lie within the range of the sine function, which is between 0 and 1. 2. **Expressing \( z \)**: Substitute \( z = x + iy \): \[ \frac{z - 4}{2i} = \frac{(x + iy) - 4}{2i} = \frac{(x - 4) + iy}{2i} \] This can be rewritten as: \[ \frac{(x - 4)}{2i} + \frac{y}{2i} = \frac{y}{2} - \frac{x - 4}{2} i \] 3. **Identifying the real and imaginary parts**: The real part is \( \frac{y}{2} \) and the imaginary part is \( -\frac{x - 4}{2} \). 4. **Setting the conditions for the sine function**: Since \( \sin^{-1}(u) \) is defined for \( 0 \leq u \leq 1 \), we need: \[ 0 \leq \frac{y}{2} \leq 1 \] This implies: \[ 0 \leq y \leq 2 \] 5. **Finding the condition on \( x \)**: The imaginary part must also satisfy: \[ -\frac{x - 4}{2} \geq 0 \implies x - 4 \leq 0 \implies x \leq 4 \] 6. **Combining the results**: From the above conditions, we have: - \( 0 \leq y \leq 2 \) - \( x \leq 4 \) 7. **Final values**: The values of \( x \) and \( y \) can be summarized as: - \( x = 4 \) (fixed value) - \( y \) can take any value in the range \( [0, 2] \). ### Conclusion: Thus, the solution to the problem is: - \( x = 4 \) - \( 0 \leq y \leq 2 \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 1|55 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS )|22 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If z= x+iy and the amplitude of (z-2-3i) is (pi)/(4) . Find the relation between x and y.

If for a complex number z=x+iy , sec^(-1)((z-2)/(i)) is a real angle in (0,(pi)/(2)),(x,y in R), then locus of z

If pi le x le (3pi)/(2) then sin pi le sinx le sin(3pi)/(2)

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

Find the area bounded by y = sin x, 0 le x le (pi)/(4), y= cos x, (pi)/(4) le x le (pi)/(2) and the x-axis

If z=x+iy such that |z+1|=|z-1| and arg((z-1)/(z+1))=(pi)/(4) then

Maximize z = 7x_(1) + 3x_(2) by graphical method Subjecto to x_(1) + 2x_(2) ge 3 x_(1) + x_(2) le 4 0 le x_(1) le (5)/(2) and 0 le x_(2) le (3)/(2)

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(4)(x) ?

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -EXERCISE
  1. The number of complex numbers satisfying (1 + i)z = i|z|

    Text Solution

    |

  2. Suppose a, b, c in R and C lt 0. Let z = a + (b + ic)^(2015) + (b-ic)^...

    Text Solution

    |

  3. The number of solutions of z^(2) + |z| = 0 is

    Text Solution

    |

  4. The equation |((1+i)z-2)/((1+i)z+4)|=k does not represent a circle whe...

    Text Solution

    |

  5. If |z| ge 5, then least value of |z - (1)/(z)| is

    Text Solution

    |

  6. Principal argument of z = (i-1)/(i(1-"cos"(2pi)/(7))+"sin"(2pi)/(7)) i...

    Text Solution

    |

  7. If (x+iy) = sqrt((a+ib)/(c+id)) then prove that (x^2 + y^2)^2 = (a^2 ...

    Text Solution

    |

  8. For any three complex numbers z(1),z(2),z(3), if Delta=|{:(1,z(1),bar(...

    Text Solution

    |

  9. If x, y, a, b in R, a ne 0 and (a + ib) (x + iy) = (a^(2) + b^(2))i, t...

    Text Solution

    |

  10. If omega (ne 1) is a cube root of unity, then the value of tan[(omega^...

    Text Solution

    |

  11. If z is purely imaginary and Im (z) lt 0, then arg(i bar(z)) + arg(z) ...

    Text Solution

    |

  12. The inequality a + ib gt c + id is true when

    Text Solution

    |

  13. Let z in C be such that Re(z^(2)) = 0, then

    Text Solution

    |

  14. If z(1),z(2) and z(3),z(4) are two pairs of conjugate complex numbers ...

    Text Solution

    |

  15. If z = x + iy and 0 le sin^(-1) ((z-4)/(2i)) le (pi)/(2) then

    Text Solution

    |

  16. If a gt 0 and z|z| + az + 3i = 0, then z is

    Text Solution

    |

  17. If z is a complex numbers such that z ne 0 and "Re"(z)=0, then

    Text Solution

    |

  18. If zk=cos((kpi)/10)+isin((kpi)/10), then z1z2z3z4 is equal to

    Text Solution

    |

  19. If |z(1)| = |z(2)| = 1, z(1)z(2) ne -1 and z = (z(1) + z(2))/(1+z(1)z(...

    Text Solution

    |

  20. If z in C, then Re(bar(z)^(2))= k^(2), k gt 0, represents

    Text Solution

    |