Home
Class 12
MATHS
If |z(1)| = |z(2)| = 1, z(1)z(2) ne -1 a...

If `|z_(1)| = |z_(2)| = 1, z_(1)z_(2) ne -1 and z = (z_(1) + z_(2))/(1+z_(1)z_(2))` then

A

z is a purely real number

B

z is a purely imaginary number

C

|z| = 1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: 1. \( |z_1| = |z_2| = 1 \) 2. \( z_1 z_2 \neq -1 \) 3. We need to analyze \( z = \frac{z_1 + z_2}{1 + z_1 z_2} \) ### Step 1: Understanding the Modulus of \( z_1 \) and \( z_2 \) Since \( |z_1| = 1 \) and \( |z_2| = 1 \), we can express \( z_1 \) and \( z_2 \) in exponential form: - Let \( z_1 = e^{i\theta_1} \) - Let \( z_2 = e^{i\theta_2} \) ### Step 2: Express \( z \) in terms of \( z_1 \) and \( z_2 \) Using the definitions of \( z_1 \) and \( z_2 \): \[ z = \frac{e^{i\theta_1} + e^{i\theta_2}}{1 + e^{i(\theta_1 + \theta_2)}} \] ### Step 3: Simplifying the Expression We can simplify \( z \): \[ z = \frac{e^{i\theta_1} + e^{i\theta_2}}{1 + e^{i(\theta_1 + \theta_2)}} \] Using the property of complex numbers, we can rewrite the numerator: \[ z = \frac{2 \cos\left(\frac{\theta_1 + \theta_2}{2}\right) e^{i\left(\frac{\theta_1 + \theta_2}{2}\right)}}{1 + e^{i(\theta_1 + \theta_2)}} \] ### Step 4: Finding the Modulus of \( z \) To find the modulus \( |z| \): \[ |z| = \left| \frac{z_1 + z_2}{1 + z_1 z_2} \right| = \frac{|z_1 + z_2|}{|1 + z_1 z_2|} \] Since \( |z_1| = |z_2| = 1 \): \[ |z_1 + z_2| = |2 \cos\left(\frac{\theta_1 + \theta_2}{2}\right)| \] And: \[ |1 + z_1 z_2| = |1 + e^{i(\theta_1 + \theta_2)}| = \sqrt{(1 + \cos(\theta_1 + \theta_2))^2 + \sin^2(\theta_1 + \theta_2)} \] This simplifies to: \[ |1 + z_1 z_2| = \sqrt{2(1 + \cos(\theta_1 + \theta_2))} = 2\cos\left(\frac{\theta_1 + \theta_2}{2}\right) \] Thus: \[ |z| = \frac{|2 \cos\left(\frac{\theta_1 + \theta_2}{2}\right)|}{2 \cos\left(\frac{\theta_1 + \theta_2}{2}\right)} = 1 \] ### Step 5: Conclusion Since \( |z| = 1 \), we conclude that: - \( z \) is on the unit circle. ### Step 6: Checking for Real or Imaginary To check if \( z \) is purely real or purely imaginary, we note that: - If \( z = \frac{z_1 + z_2}{1 + z_1 z_2} \) and \( z_1 z_2 \neq -1 \), the imaginary part must be zero for \( z \) to be real. Thus, we conclude that \( z \) is purely real. ### Final Answer The value of \( z \) is purely real.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 1|55 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS )|22 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

Let z_(1), z_(2), z_(3) be three complex numbers such that |z_(1)| = |z_(2)| = |z_(3)| = 1 and z = (z_(1) + z_(2) + z_(3))((1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))) , then |z| cannot exceed

If z,z=z_(2) and |z_(1)+z_(2)|=|(1)/(z_(1))+(1)/(z_(2))| then

If z_(1)=2-i,z_(2)=1+i, find |(z_(1)+z_(2)+1)/(z_(1)-z_(2)+i)|

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If | z_ (1) + z_ (2) | = | z_ (1) -z_ (2) |, then arg z_ (1) -arg z_ (2) =

If ,z_(1)=,2-i,z_(2)=1+i find ,,|(z_(1)+z_(2)+1)/(z_(1)-z_(2)+i)|

Let four points z_(1),z_(2),z_(3),z_(4) be in complex plane such that |z_(2)|= 1, |z_(1)|leq 1 and |z_(3)| le 1 . If z_(3) = (z_(2)(z_(1)-z_(4)))/(barz_(1)z_(4)-1) , then |z_(4)| can be

If |z_(1)|!=1,|(z_(1)-z_(2))/(1-bar(z)_(1)z_(2))|=1, then

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -EXERCISE
  1. The number of complex numbers satisfying (1 + i)z = i|z|

    Text Solution

    |

  2. Suppose a, b, c in R and C lt 0. Let z = a + (b + ic)^(2015) + (b-ic)^...

    Text Solution

    |

  3. The number of solutions of z^(2) + |z| = 0 is

    Text Solution

    |

  4. The equation |((1+i)z-2)/((1+i)z+4)|=k does not represent a circle whe...

    Text Solution

    |

  5. If |z| ge 5, then least value of |z - (1)/(z)| is

    Text Solution

    |

  6. Principal argument of z = (i-1)/(i(1-"cos"(2pi)/(7))+"sin"(2pi)/(7)) i...

    Text Solution

    |

  7. If (x+iy) = sqrt((a+ib)/(c+id)) then prove that (x^2 + y^2)^2 = (a^2 ...

    Text Solution

    |

  8. For any three complex numbers z(1),z(2),z(3), if Delta=|{:(1,z(1),bar(...

    Text Solution

    |

  9. If x, y, a, b in R, a ne 0 and (a + ib) (x + iy) = (a^(2) + b^(2))i, t...

    Text Solution

    |

  10. If omega (ne 1) is a cube root of unity, then the value of tan[(omega^...

    Text Solution

    |

  11. If z is purely imaginary and Im (z) lt 0, then arg(i bar(z)) + arg(z) ...

    Text Solution

    |

  12. The inequality a + ib gt c + id is true when

    Text Solution

    |

  13. Let z in C be such that Re(z^(2)) = 0, then

    Text Solution

    |

  14. If z(1),z(2) and z(3),z(4) are two pairs of conjugate complex numbers ...

    Text Solution

    |

  15. If z = x + iy and 0 le sin^(-1) ((z-4)/(2i)) le (pi)/(2) then

    Text Solution

    |

  16. If a gt 0 and z|z| + az + 3i = 0, then z is

    Text Solution

    |

  17. If z is a complex numbers such that z ne 0 and "Re"(z)=0, then

    Text Solution

    |

  18. If zk=cos((kpi)/10)+isin((kpi)/10), then z1z2z3z4 is equal to

    Text Solution

    |

  19. If |z(1)| = |z(2)| = 1, z(1)z(2) ne -1 and z = (z(1) + z(2))/(1+z(1)z(...

    Text Solution

    |

  20. If z in C, then Re(bar(z)^(2))= k^(2), k gt 0, represents

    Text Solution

    |