Home
Class 12
MATHS
If x + iy = (1)/(1-cos theta + 2 i sin t...

If `x + iy = (1)/(1-cos theta + 2 i sin theta), theta ne 2n pi, n in I`, then maximum value of x is

A

1

B

2

C

`(1)/(2)`

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( x \) given the expression \( x + iy = \frac{1}{1 - \cos \theta + 2i \sin \theta} \), we will follow these steps: ### Step 1: Express the complex number We start with the expression: \[ z = x + iy = \frac{1}{1 - \cos \theta + 2i \sin \theta} \] ### Step 2: Rationalize the denominator To simplify this expression, we multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{1 \cdot (1 - \cos \theta - 2i \sin \theta)}{(1 - \cos \theta + 2i \sin \theta)(1 - \cos \theta - 2i \sin \theta)} \] ### Step 3: Simplify the denominator The denominator can be simplified using the formula \( (a + b)(a - b) = a^2 - b^2 \): \[ (1 - \cos \theta)^2 + (2 \sin \theta)^2 = (1 - \cos \theta)^2 + 4 \sin^2 \theta \] Expanding \( (1 - \cos \theta)^2 \): \[ 1 - 2\cos \theta + \cos^2 \theta + 4 \sin^2 \theta = 1 - 2\cos \theta + \cos^2 \theta + 4(1 - \cos^2 \theta) \] This simplifies to: \[ 1 - 2\cos \theta + 5 - 3\cos^2 \theta = 6 - 2\cos \theta - 3\cos^2 \theta \] ### Step 4: Write the real part \( x \) Now, we can express \( z \): \[ z = \frac{1 - \cos \theta - 2i \sin \theta}{6 - 2\cos \theta - 3\cos^2 \theta} \] The real part \( x \) is given by: \[ x = \frac{1 - \cos \theta}{6 - 2\cos \theta - 3\cos^2 \theta} \] ### Step 5: Find the maximum value of \( x \) To maximize \( x \), we need to minimize the denominator \( 6 - 2\cos \theta - 3\cos^2 \theta \). Let \( u = \cos \theta \). The expression becomes: \[ f(u) = 6 - 2u - 3u^2 \] This is a quadratic function that opens downwards. The maximum occurs at: \[ u = -\frac{b}{2a} = -\frac{-2}{2 \cdot -3} = \frac{1}{3} \] ### Step 6: Calculate the minimum value of the denominator Substituting \( u = \frac{1}{3} \) into the denominator: \[ 6 - 2\left(\frac{1}{3}\right) - 3\left(\frac{1}{3}\right)^2 = 6 - \frac{2}{3} - 3 \cdot \frac{1}{9} = 6 - \frac{2}{3} - \frac{1}{3} = 6 - 1 = 5 \] ### Step 7: Maximum value of \( x \) Thus, the maximum value of \( x \) is: \[ x = \frac{1 - \cos \theta}{5} \] To find the maximum value of \( 1 - \cos \theta \), we note that \( \cos \theta \) can range from -1 to 1. Therefore, the maximum value occurs when \( \cos \theta = -1 \): \[ 1 - (-1) = 2 \] Thus, the maximum value of \( x \) is: \[ x = \frac{2}{5} \] ### Final Answer The maximum value of \( x \) is \( \frac{2}{5} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE|20 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

"cot" theta = "sin" 2 theta, theta ne n pi, n in Z, "if" theta equals

(cos theta + i sin theta) ^ (n) = cos n theta + i sin n theta

Express (1)/(1-cos theta+2i sin theta) in the form x+iy.

If |2 sin theta-cosec theta| ge 1 and theta ne (n pi)/2, n in Z , then

If "sin "3theta = 4"sin" theta("sin"^(2) x-"sin"^(2)theta), theta ne npi, n in Z . Then, the set of values of x, is

If x+iy=(2)/(3+cos theta+i sin theta), shoe that 2x^(2)+2y^(2)=3x-1

If equation sin^(-1) (4 sin^(20 theta + sin theta) + cos^(-1) (6 sin theta - 1) = (pi)/(2) has 10 solution for theta in [0, n pi] , then find the minimum value of n

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -EXERCISE LEVEL 1
  1. The inequality |z-i| lt |z + i| represents the region

    Text Solution

    |

  2. Show that if iz^3+z^2-z+i=0, then |z|=1

    Text Solution

    |

  3. If x + iy = (1)/(1-cos theta + 2 i sin theta), theta ne 2n pi, n in I,...

    Text Solution

    |

  4. The equation z^3=bar z has

    Text Solution

    |

  5. If z = 5 + t + isqrt(25 - t^(2)), (-5 le t le 5), then locus of z is a...

    Text Solution

    |

  6. If omega is complex cube root of that 1/(a+omega)+1/(b+omega)+1/(c+ome...

    Text Solution

    |

  7. if |z-iRe(z)|=|z-Im(z)| where i=sqrt(-1) then z lies on

    Text Solution

    |

  8. If omega is a complex cube root of unity, then value of expression cos...

    Text Solution

    |

  9. If roots of the equation z^2+ az + b = 0 are purely imaginary then

    Text Solution

    |

  10. The system of equations |z+1-i|=sqrt2 and |z| = 3 has

    Text Solution

    |

  11. If 8iotaz^3+12z^2-18z+27iota=0 then: a. |z|=3/2 b. |z|=2/3 c. |z|=...

    Text Solution

    |

  12. If a complex number z lies in the interior or on the boundary of a cir...

    Text Solution

    |

  13. If x+iy=3/(2+costheta +i sin theta), then show that x^2+y^2=4x-3

    Text Solution

    |

  14. Suppose z(1), z(2), z(3) represent the vertices A, B and C respectivel...

    Text Solution

    |

  15. Suppose that three points z(1), z(2), z(3) are connected by the relati...

    Text Solution

    |

  16. If the number (z-1)/(z+1) is purely imaginary, then

    Text Solution

    |

  17. If z s a complex number such that -pi/2 leq arg z leq pi/2, then which...

    Text Solution

    |

  18. If |omega|=1, then the set of points z=omega+1/omega is contained in o...

    Text Solution

    |

  19. The number of complex numbers z such that |z|=1a n d|z// z + z //z=1...

    Text Solution

    |

  20. If |z1|=|z2|=|z3|=1 are twu complex numbers such that |z1|=|z2|=sqrt2...

    Text Solution

    |