Home
Class 12
MATHS
Suppose arg (z) = - 5 pi//13, then arg((...

Suppose `arg (z) = - 5 pi//13`, then `arg((z + bar(z))/(1+z bar(z)))` is

A

`- 5 pi//13`

B

`5 pi//13`

C

`pi`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the argument of the expression \(\frac{z + \bar{z}}{1 + z \bar{z}}\) given that \(\arg(z) = -\frac{5\pi}{13}\). ### Step-by-Step Solution: 1. **Understanding the Argument of \(z\)**: Given \(\arg(z) = -\frac{5\pi}{13}\), we can express \(z\) in terms of its polar form: \[ z = r(\cos(-\frac{5\pi}{13}) + i\sin(-\frac{5\pi}{13})) \] where \(r\) is the modulus of \(z\). 2. **Finding \(z + \bar{z}\)**: The conjugate of \(z\) is given by: \[ \bar{z} = r(\cos(\frac{5\pi}{13}) + i\sin(\frac{5\pi}{13})) \] Therefore, we have: \[ z + \bar{z} = r(\cos(-\frac{5\pi}{13}) + i\sin(-\frac{5\pi}{13})) + r(\cos(\frac{5\pi}{13}) + i\sin(\frac{5\pi}{13})) \] Simplifying this, we find: \[ z + \bar{z} = r\left(2\cos\left(-\frac{5\pi}{13}\right)\right) = 2r\cos\left(-\frac{5\pi}{13}\right) \] Since \(\cos(-\theta) = \cos(\theta)\), we have: \[ z + \bar{z} = 2r\cos\left(\frac{5\pi}{13}\right) \] 3. **Finding \(1 + z \bar{z}\)**: The product \(z \bar{z}\) is: \[ z \bar{z} = r^2 \] Therefore: \[ 1 + z \bar{z} = 1 + r^2 \] 4. **Forming the Expression**: Now we can substitute these results into the expression: \[ \frac{z + \bar{z}}{1 + z \bar{z}} = \frac{2r\cos\left(\frac{5\pi}{13}\right)}{1 + r^2} \] 5. **Finding the Argument**: The argument of a real number is 0 if it is positive, \(\pi\) if it is negative, and undefined if it is zero. Since \(r\) is a positive real number, \(1 + r^2\) is also positive. Therefore, the argument of the numerator \(2r\cos\left(\frac{5\pi}{13}\right)\) will depend on the sign of \(\cos\left(\frac{5\pi}{13}\right)\). Since \(-\frac{5\pi}{13}\) is in the fourth quadrant, \(\cos\left(\frac{5\pi}{13}\right)\) is positive. Thus: \[ \arg\left(\frac{z + \bar{z}}{1 + z \bar{z}}\right) = \arg(2r\cos\left(\frac{5\pi}{13}\right)) - \arg(1 + r^2) = 0 \] 6. **Final Result**: Therefore, the argument of the expression is: \[ \arg\left(\frac{z + \bar{z}}{1 + z \bar{z}}\right) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE|20 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

arg(bar(z))=-arg(z)

arg((z)/(bar(z)))=arg(z)-arg(bar(z))

arg((1)/(bar(z)))=arg((zbar(z))/(bar(z)))

If Z and omega are two complex numbers such that |zomega|=1andarg(z)-arg(omega)=(3pi)/(2) , then arg ((1-2bar(z)omega)/(1+3bar(z)omega)) is : (Here arg(z) denotes the principal argument of complex number z)

If arg(z)=-(pi)/(4) then the value of arg((z^(5)+(bar(z))^(5))/(1+z(bar(z))))^(n) is

If z is purely imaginary and Im (z) lt 0 , then arg(i bar(z)) + arg(z) is equal to

If -pi

Write the value of arg(z)+arg(bar(z))

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -EXERCISE LEVEL 1
  1. If |z1|=|z2|=|z3|=1 then value of |z1-z3|^2+|z3-z1|^2+|z1-z2|^2 cannot...

    Text Solution

    |

  2. Let z1z2,z3, be three complex number such that z1+z2+z3=0 and |...

    Text Solution

    |

  3. Let z(1), z(2), z(3) be three complex numbers such that |z(1)| = |z(2)...

    Text Solution

    |

  4. Suppose z is a complex number such that z ne -1, |z| = 1, and arg(z) =...

    Text Solution

    |

  5. Let a = Im((1+z^(2))/(2iz)), where z is any non-zero complex number. T...

    Text Solution

    |

  6. Number of complex numbers such that |z| = 1 and z = 1 - 2 bar(z) is

    Text Solution

    |

  7. Let z(1), z(2) be two complex numbers such that z(1) ne 0 and z(2)//z(...

    Text Solution

    |

  8. If z = i(1+sqrt(3)),"then"z^(4)+2z^(3)+4z^(2) + 5 is equal to

    Text Solution

    |

  9. If the fourth roots of unity are z1, z2, z3, z4 and z1^2+z2^2+z3^2+z4^...

    Text Solution

    |

  10. Suppose arg (z) = - 5 pi//13, then arg((z + bar(z))/(1+z bar(z))) is

    Text Solution

    |

  11. The number of values of theta in (0, pi], such that (cos theta + i sin...

    Text Solution

    |

  12. If z in C - {0, -2} is such that log((1//7)) |z-2| gt log((1//7)) |z| ...

    Text Solution

    |

  13. Im ((2z+1)/(iz+1))=5 represents

    Text Solution

    |

  14. If z1,z2 are two complex numbers such that Im(z1+z2)=0,Im(z1z2)=0, the...

    Text Solution

    |

  15. The number (1+ i)^n / (1 - i )^(n-2) is equal to

    Text Solution

    |

  16. Let omega ne 1, be a cube root of unity, and f : I rarr C be defined b...

    Text Solution

    |

  17. If z + (1)/(z) = 2 cos theta, z in "C then z"^(2n) - 2z^(n) cos (n the...

    Text Solution

    |

  18. If omega ne 1 is a cube root of unity, then z=sum(k=1)^(60)omega^(k) -...

    Text Solution

    |

  19. Let g(x) and h(x) be two polynomials with real coefficients. If p(x) =...

    Text Solution

    |

  20. If x^(2) - x + 1 divides the polynomial x^(n+1) - x^(n) + 1, then n mu...

    Text Solution

    |