Home
Class 12
MATHS
The number of values of theta in (0, pi]...

The number of values of `theta in (0, pi]`, such that `(cos theta + i sin theta) (cos 3 theta + i sin 3 theta) (cos 5 theta + i sin 5 theta) (cos 7 theta + i sin 7 theta) (cos 9 theta + i sin 9 theta) = -1` is

A

11

B

13

C

14

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of values of \( \theta \) in the interval \( (0, \pi] \) that satisfy the equation: \[ (\cos \theta + i \sin \theta)(\cos 3\theta + i \sin 3\theta)(\cos 5\theta + i \sin 5\theta)(\cos 7\theta + i \sin 7\theta)(\cos 9\theta + i \sin 9\theta) = -1 \] ### Step 1: Rewrite the equation in exponential form Using Euler's formula, we can rewrite each term as follows: \[ \cos \theta + i \sin \theta = e^{i\theta}, \quad \cos 3\theta + i \sin 3\theta = e^{i3\theta}, \quad \cos 5\theta + i \sin 5\theta = e^{i5\theta}, \quad \cos 7\theta + i \sin 7\theta = e^{i7\theta}, \quad \cos 9\theta + i \sin 9\theta = e^{i9\theta} \] Thus, the left-hand side becomes: \[ e^{i\theta} \cdot e^{i3\theta} \cdot e^{i5\theta} \cdot e^{i7\theta} \cdot e^{i9\theta} = e^{i(\theta + 3\theta + 5\theta + 7\theta + 9\theta)} \] ### Step 2: Simplify the exponent Now, we need to simplify the exponent: \[ \theta + 3\theta + 5\theta + 7\theta + 9\theta = 25\theta \] So we have: \[ e^{i25\theta} = -1 \] ### Step 3: Express \(-1\) in exponential form The number \(-1\) can be expressed in exponential form as: \[ -1 = e^{i\pi + 2n\pi} \quad \text{for } n \in \mathbb{Z} \] ### Step 4: Set the exponents equal Setting the exponents equal gives us: \[ 25\theta = \pi + 2n\pi \] ### Step 5: Solve for \(\theta\) Dividing both sides by 25, we find: \[ \theta = \frac{\pi(1 + 2n)}{25} \] ### Step 6: Determine the range of \(n\) We need to find values of \(n\) such that \( \theta \) lies in the interval \( (0, \pi] \): \[ 0 < \frac{\pi(1 + 2n)}{25} \leq \pi \] ### Step 7: Solve the inequalities 1. From \(0 < \frac{\pi(1 + 2n)}{25}\): \[ 1 + 2n > 0 \implies n \geq 0 \] 2. From \(\frac{\pi(1 + 2n)}{25} \leq \pi\): \[ 1 + 2n \leq 25 \implies 2n \leq 24 \implies n \leq 12 \] ### Step 8: Determine integer values of \(n\) Thus, \(n\) can take integer values from 0 to 12, inclusive. This gives us: \[ n = 0, 1, 2, \ldots, 12 \] ### Step 9: Count the values The total number of integer values for \(n\) is: \[ 12 - 0 + 1 = 13 \] ### Conclusion The number of values of \( \theta \) in the interval \( (0, \pi] \) that satisfy the given equation is: \[ \boxed{13} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE|20 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

(cos theta + i sin theta)^3 xx (cos theta-i sin theta)^4=

(cos theta + i sin theta) ^ (n) = cos n theta + i sin n theta

"(cos theta+i sin theta)^(6)(cos theta-i sin theta)^(-3)

((cos theta + i sin theta) / (sin theta + i cos theta)) ^ (4) = cos8 theta + i sin8 theta

((cos3 theta+i sin3 theta)^(5)(cos theta-i sin theta)^(3))/((cos5 theta+i sin5 theta)^(7)(cos2 theta-i sin2 theta)^(5))

Prove that ((1+cos theta+i sin theta)/(1+cos theta-i sin theta))^(n)=cos n theta+i sin n theta

(sin 3 theta + sin 5 theta + sin 7 theta + sin 9theta)/(cos 3 theta + cos 5 theta + cos 7 theta + cos 9 theta )=

((cos2 theta+i sin2 theta)^(3)(cos3 theta-i sin3 theta)^(5))/((cos3 theta+i sin3 theta)^(2)(cos4 theta+i sin4 theta)^(3))=

(sin theta)/(cos3 theta)+(sin3 theta)/(cos9 theta)+(sin9 theta)/(cos27 theta)+(sin27 theta)/(cos81 theta)=

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -EXERCISE LEVEL 1
  1. If |z1|=|z2|=|z3|=1 then value of |z1-z3|^2+|z3-z1|^2+|z1-z2|^2 cannot...

    Text Solution

    |

  2. Let z1z2,z3, be three complex number such that z1+z2+z3=0 and |...

    Text Solution

    |

  3. Let z(1), z(2), z(3) be three complex numbers such that |z(1)| = |z(2)...

    Text Solution

    |

  4. Suppose z is a complex number such that z ne -1, |z| = 1, and arg(z) =...

    Text Solution

    |

  5. Let a = Im((1+z^(2))/(2iz)), where z is any non-zero complex number. T...

    Text Solution

    |

  6. Number of complex numbers such that |z| = 1 and z = 1 - 2 bar(z) is

    Text Solution

    |

  7. Let z(1), z(2) be two complex numbers such that z(1) ne 0 and z(2)//z(...

    Text Solution

    |

  8. If z = i(1+sqrt(3)),"then"z^(4)+2z^(3)+4z^(2) + 5 is equal to

    Text Solution

    |

  9. If the fourth roots of unity are z1, z2, z3, z4 and z1^2+z2^2+z3^2+z4^...

    Text Solution

    |

  10. Suppose arg (z) = - 5 pi//13, then arg((z + bar(z))/(1+z bar(z))) is

    Text Solution

    |

  11. The number of values of theta in (0, pi], such that (cos theta + i sin...

    Text Solution

    |

  12. If z in C - {0, -2} is such that log((1//7)) |z-2| gt log((1//7)) |z| ...

    Text Solution

    |

  13. Im ((2z+1)/(iz+1))=5 represents

    Text Solution

    |

  14. If z1,z2 are two complex numbers such that Im(z1+z2)=0,Im(z1z2)=0, the...

    Text Solution

    |

  15. The number (1+ i)^n / (1 - i )^(n-2) is equal to

    Text Solution

    |

  16. Let omega ne 1, be a cube root of unity, and f : I rarr C be defined b...

    Text Solution

    |

  17. If z + (1)/(z) = 2 cos theta, z in "C then z"^(2n) - 2z^(n) cos (n the...

    Text Solution

    |

  18. If omega ne 1 is a cube root of unity, then z=sum(k=1)^(60)omega^(k) -...

    Text Solution

    |

  19. Let g(x) and h(x) be two polynomials with real coefficients. If p(x) =...

    Text Solution

    |

  20. If x^(2) - x + 1 divides the polynomial x^(n+1) - x^(n) + 1, then n mu...

    Text Solution

    |