Home
Class 12
MATHS
Let a = Im((1+z^(2))/(2iz)), where z is ...

Let `a = Im((1+z^(2))/(2iz))`, where z is any non-zero complex number. Then the set `A = {a : |z| = 1 and z ne +- 1}` is equal to

A

(-1, 1)

B

[-1, 1]

C

[0, 1)

D

(-1, 0]

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the set \( A = \{ a : a = \text{Im}\left(\frac{1 + z^2}{2iz}\right), |z| = 1, z \neq \pm 1 \} \). ### Step-by-Step Solution: 1. **Express \( z \)**: Since \( |z| = 1 \), we can express \( z \) in terms of an angle \( \theta \): \[ z = e^{i\theta} = \cos \theta + i \sin \theta \] 2. **Calculate \( z^2 \)**: \[ z^2 = (e^{i\theta})^2 = e^{2i\theta} = \cos(2\theta) + i \sin(2\theta) \] 3. **Substitute \( z \) and \( z^2 \) into the expression**: \[ \frac{1 + z^2}{2iz} = \frac{1 + (\cos(2\theta) + i \sin(2\theta))}{2i(\cos \theta + i \sin \theta)} \] 4. **Simplify the numerator**: \[ 1 + z^2 = 1 + \cos(2\theta) + i \sin(2\theta) = (1 + \cos(2\theta)) + i \sin(2\theta) \] 5. **Simplify the denominator**: \[ 2iz = 2i(\cos \theta + i \sin \theta) = 2i \cos \theta - 2 \sin \theta \] 6. **Combine the fractions**: \[ \frac{(1 + \cos(2\theta)) + i \sin(2\theta)}{2i \cos \theta - 2 \sin \theta} \] 7. **Multiply by the conjugate of the denominator**: \[ \text{Conjugate} = 2i \cos \theta + 2 \sin \theta \] \[ \text{Numerator} = ((1 + \cos(2\theta)) + i \sin(2\theta))(2i \cos \theta + 2 \sin \theta) \] 8. **Expand the numerator**: \[ = (1 + \cos(2\theta))(2i \cos \theta) + (1 + \cos(2\theta))(2 \sin \theta) + i \sin(2\theta)(2i \cos \theta) + i \sin(2\theta)(2 \sin \theta) \] 9. **Separate real and imaginary parts**: The imaginary part will be: \[ \text{Im} = 2\sin \theta(1 + \cos(2\theta)) + 2\sin(2\theta)(-\cos \theta) \] 10. **Use trigonometric identities**: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \quad \text{and} \quad \sin(2\theta) = 2\sin(\theta)\cos(\theta) \] 11. **Substitute and simplify**: After substituting and simplifying, we find: \[ a = -\frac{1}{2}(x + x^3 + xy^2) \quad \text{where } x = \cos \theta, y = \sin \theta \] 12. **Determine the range of \( a \)**: Since \( z \neq \pm 1 \), \( \theta \) cannot be \( 0 \) or \( \pi \). Thus, \( a \) varies as \( \theta \) varies from \( 0 \) to \( 2\pi \) excluding \( 0 \) and \( \pi \). 13. **Final Result**: The set \( A \) is equal to \( (-1, 1) \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE NUMERICAL ANSWER TYPE QUESTIONS|20 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If w=|z|^(2)+iz^(2), where z is a nonzero complex number then

Let z be a non-zero complex number Then what is z^(-1) (multiplicative inverse of z) equal to ?

Let z be any non-zero complex number. Then pr. arg(z) + pr.arg (barz) is equal to

Find the non-zero complex numbers z satisfying z=iz^(2)

Let z = x + iy be a non - zero complex number such that z^(2) = I |z|^(2) , where I = sqrt(-1) then z lies on the :

Let z be a complex number such that |z| + z = 3 + i (Where i=sqrt(-1)) Then ,|z| is equal to

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS
  1. If z is a complex number of unit modulus of modulus and argument thet...

    Text Solution

    |

  2. if (5z2)/(7z1) is purely imaginary number then |(2z1+3z2)/(2z1-3z2) |...

    Text Solution

    |

  3. Let a = Im((1+z^(2))/(2iz)), where z is any non-zero complex number. T...

    Text Solution

    |

  4. If a complex number z satisfies z + sqrt(2) |z + 1| + i=0, then |z| is...

    Text Solution

    |

  5. If z is a complex number such that |z|>=2 then the minimum value of |z...

    Text Solution

    |

  6. Let w(Im w != 0) be a complex number. Then the set of all complex num...

    Text Solution

    |

  7. If z(1),z(2) and z(3),z(4) are two pairs of conjugate complex numbers ...

    Text Solution

    |

  8. Let z!=i be any complex number such that (z-i)/(z+i) is a purely imagi...

    Text Solution

    |

  9. For all complex numbers z of the form 1 + ialpha, alpha in "R if z"^(2...

    Text Solution

    |

  10. A complex number z is said to be uni-modular if |z|=1. Suppose z(1) a...

    Text Solution

    |

  11. The largest value of r for which the region represented by the set {om...

    Text Solution

    |

  12. If Z is a non-real complex number, then find the minimum value of (Imz...

    Text Solution

    |

  13. A value of for which (2+3isintheta)/(1-2isintheta) purely imaginary, ...

    Text Solution

    |

  14. The point represented by 2+i in the Argand plane moves 1 unit eastward...

    Text Solution

    |

  15. Let z=1+ai be a complex number, a > 0,such that z^3 is a real number....

    Text Solution

    |

  16. Let zinC, the set of complex numbers. Thenthe equation, 2|z +3i| - |z...

    Text Solution

    |

  17. The equation I m((i z-2)/(z-i))+1=0, z & epsi; C , z!=i represents a ...

    Text Solution

    |

  18. If alpha, beta in C are the distinct roots of the equation x^(2)-x+1=0...

    Text Solution

    |

  19. The set of all alpha in R for which w = (1+(1-8 alpha)z)/(1-z)is a pur...

    Text Solution

    |

  20. If |z - 3+ 2i| leq 4, (where i = sqrt-1) then the difference of grea...

    Text Solution

    |