Home
Class 12
MATHS
Suppose X ~ B(n,p) and P(X=3)=P(X=5). If...

Suppose X ~ B(n,p) and P(X=3)=P(X=5). If p `gt` 1/2, then

A

`n le 7`

B

`n gt 8`

C

`n ge 9`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( X \sim B(n, p) \) and \( P(X=3) = P(X=5) \) with \( p > \frac{1}{2} \), we will follow these steps: ### Step 1: Write the Probability Expressions The probability mass function for a binomial distribution is given by: \[ P(X = r) = \binom{n}{r} p^r (1-p)^{n-r} \] Thus, we can express the probabilities for \( X = 3 \) and \( X = 5 \): \[ P(X = 3) = \binom{n}{3} p^3 (1-p)^{n-3} \] \[ P(X = 5) = \binom{n}{5} p^5 (1-p)^{n-5} \] ### Step 2: Set the Probabilities Equal Given that \( P(X=3) = P(X=5) \), we can set the two expressions equal to each other: \[ \binom{n}{3} p^3 (1-p)^{n-3} = \binom{n}{5} p^5 (1-p)^{n-5} \] ### Step 3: Simplify the Equation We can cancel out common terms from both sides: \[ \frac{\binom{n}{3}}{\binom{n}{5}} = \frac{p^5 (1-p)^{n-5}}{p^3 (1-p)^{n-3}} \] This simplifies to: \[ \frac{\binom{n}{3}}{\binom{n}{5}} = \frac{p^2}{(1-p)^2} \] ### Step 4: Calculate the Binomial Coefficient Ratio The ratio of the binomial coefficients can be expressed as: \[ \frac{\binom{n}{3}}{\binom{n}{5}} = \frac{n! / (3!(n-3)!)}{n! / (5!(n-5)!)} = \frac{5! (n-5)!}{3! (n-3)!} = \frac{5 \cdot 4}{2 \cdot 1} = 10 \cdot \frac{(n-5)!}{(n-3)!} = 10 \cdot (n-4)(n-3) \] Thus, we have: \[ 10(n-4)(n-3) = \frac{p^2}{(1-p)^2} \] ### Step 5: Rearranging the Equation Rearranging gives: \[ \frac{p^2}{(1-p)^2} = 10(n-4)(n-3) \] ### Step 6: Analyze the Condition \( p > \frac{1}{2} \) Given that \( p > \frac{1}{2} \), we know that \( \frac{p^2}{(1-p)^2} \) will be greater than 1. Therefore, we have: \[ 10(n-4)(n-3) > 1 \] This implies: \[ (n-4)(n-3) > \frac{1}{10} \] ### Step 7: Solve the Inequality To solve \( (n-4)(n-3) > \frac{1}{10} \), we can analyze the quadratic: \[ n^2 - 7n + 12 > \frac{1}{10} \] This can be rearranged to: \[ 10n^2 - 70n + 120 > 1 \] \[ 10n^2 - 70n + 119 > 0 \] ### Step 8: Finding Roots Using the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{70 \pm \sqrt{(-70)^2 - 4 \cdot 10 \cdot 119}}{2 \cdot 10} \] Calculating the discriminant: \[ 4900 - 4760 = 140 \] Thus: \[ n = \frac{70 \pm \sqrt{140}}{20} \] ### Step 9: Determine Valid Integer Values for \( n \) The roots will give us two critical points. We can analyze the intervals to find valid integer values for \( n \). Since \( n \) must be a positive integer, we check values starting from 5 upwards. ### Conclusion After analyzing the inequalities and conditions, we find that \( n \) must be in the range \( 5 \leq n \leq 7 \).
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    MCGROW HILL PUBLICATION|Exercise Exercises (Numerical Answer)|28 Videos
  • PROBABILITY

    MCGROW HILL PUBLICATION|Exercise Previous Years AIEEE/JEE Main Papers|67 Videos
  • PROBABILITY

    MCGROW HILL PUBLICATION|Exercise Exercises (Level 1 Single Correct Answer)|65 Videos
  • PERMUTATIONS AND COMBINATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |17 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|25 Videos

Similar Questions

Explore conceptually related problems

If X ~ B (6,p) and 2. P (X =3) =P (X= 2) then find the value of p

For a binomial variable X if n=5 and P(X=1)=8P(X=3), then p=

For X ~ B (n,p),if E(X) = 5, Var (X) = 2.5, then p =

For X ~ B (n,p), n = 10, E (X) = 5, then p =

Let X ~ B (n, p ), if E (X) = 5, Var (X) = 2.5, then P(X<1) is

If X follows binomial distribution with parameters n=5, p a n d P(X=2)=9 P(X=3), then find the value of p .

If X follows Binomial distribution with parameters n=5, p and P(X=2)=9P(X=3), then p is equal to ……. .

Let X ~ B (n,p) , if E (X ) = 5 , "Var" (X ) =2.5 then p (X lt 1)=

For X ~ B(n , P) and P(X=x) = ""^(8)C_(x) (1//2)^(x) (1//2)^(8-x) then state values of n and P