Home
Class 12
MATHS
If [(I,0),(3,-i)]+X = [(I,2),(3,4+i)] -X...

If `[(I,0),(3,-i)]+X = [(I,2),(3,4+i)]` -X then X is equal to

A

`[(0,-1),(3,i)]`

B

`[(0,1),(0,2+i)]`

C

`[(1,0),(0,2-i)]`

D

`[(I,2),(0,2+i)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\begin{pmatrix} I & 0 \\ 3 & -i \end{pmatrix} + X = \begin{pmatrix} I & 2 \\ 3 & 4+i \end{pmatrix} - X\), we will follow these steps: ### Step 1: Move all matrices to one side and all variables to the other side We start with the equation: \[ \begin{pmatrix} I & 0 \\ 3 & -i \end{pmatrix} + X = \begin{pmatrix} I & 2 \\ 3 & 4+i \end{pmatrix} - X \] We can add \(X\) to both sides and subtract the matrix \(\begin{pmatrix} I & 0 \\ 3 & -i \end{pmatrix}\) from both sides: \[ X + X = \begin{pmatrix} I & 2 \\ 3 & 4+i \end{pmatrix} - \begin{pmatrix} I & 0 \\ 3 & -i \end{pmatrix} \] This simplifies to: \[ 2X = \begin{pmatrix} I & 2 \\ 3 & 4+i \end{pmatrix} - \begin{pmatrix} I & 0 \\ 3 & -i \end{pmatrix} \] ### Step 2: Perform the matrix subtraction on the right-hand side Now we subtract the matrices on the right-hand side: \[ \begin{pmatrix} I & 2 \\ 3 & 4+i \end{pmatrix} - \begin{pmatrix} I & 0 \\ 3 & -i \end{pmatrix} = \begin{pmatrix} I - I & 2 - 0 \\ 3 - 3 & (4+i) - (-i) \end{pmatrix} \] Calculating each element: - First element: \(I - I = 0\) - Second element: \(2 - 0 = 2\) - Third element: \(3 - 3 = 0\) - Fourth element: \((4+i) - (-i) = 4 + i + i = 4 + 2i\) Thus, we have: \[ 2X = \begin{pmatrix} 0 & 2 \\ 0 & 4 + 2i \end{pmatrix} \] ### Step 3: Solve for \(X\) To find \(X\), we divide both sides by 2: \[ X = \frac{1}{2} \begin{pmatrix} 0 & 2 \\ 0 & 4 + 2i \end{pmatrix} \] This results in: \[ X = \begin{pmatrix} 0 & 1 \\ 0 & 2 + i \end{pmatrix} \] ### Final Answer Thus, the value of \(X\) is: \[ X = \begin{pmatrix} 0 & 1 \\ 0 & 2 + i \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL -2 ) ( single Correct Answer Type Questions)|17 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|20 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept - based) (Single Correct Answer Type Questions)|10 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

If x + iy=|{:(6i,-3i,1),(4,3i,-1),(20,3,i):}| , then what is x - iy equal to ?

If A=[(1,3),(3,4)] and A^2-xA-I=0 then find x.

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If 1+x^(4)-x^(5)=sum_(i=0)^(5)a_(i)(1+x)^(i) for all x""inR , then a_(2) is equal to ________

MCGROW HILL PUBLICATION-MATRICES-EXERCISE ( LEVEL -1) (Single Correct Answer Type Questions)
  1. If A = (a(ij))(3xx) is a matrix satrisfying the equation x^(3) -3x+1 =...

    Text Solution

    |

  2. Let A and B be square matrices of the same order. Does (A+B)^2=A^2+...

    Text Solution

    |

  3. If [(I,0),(3,-i)]+X = [(I,2),(3,4+i)] -X then X is equal to

    Text Solution

    |

  4. If A = [(0,-i),(i,0)] B = [(1,0),(0,-1)] then A B+ BA is

    Text Solution

    |

  5. A =[(1,2,3),(1,2,3),(-1,-2,-3)] then A is a nilpotent matrix of index

    Text Solution

    |

  6. If A is a 2xx2 unitary matrix then |A| is equal to

    Text Solution

    |

  7. If A= (1)/(2) ((-1,-sqrt(3)),(sqrt(3),-1)) then A^(-1)- A^(2) is equal...

    Text Solution

    |

  8. If C is a 3xx3 matrix satisfying the relation C^(2)+C=I then C^(-2) is...

    Text Solution

    |

  9. If A , B and C are three square matrices of the same size such that B ...

    Text Solution

    |

  10. If X is a 2 xx 3 matrix such that |X' X|!=0 and A = I2 - X(X' X)^(-1) ...

    Text Solution

    |

  11. The matrix A =((p,-q),(q,p)) is orthogonal if and only if

    Text Solution

    |

  12. The values of lambda for which the matrix A =((lambda ,0 ,lambda),(la...

    Text Solution

    |

  13. The values of a for which the matrix A = ((a,a^(2)-1,-3),(a+1,2,a^(...

    Text Solution

    |

  14. Let A(t)=((1,3,2),(2,5,t),(4,7-t,-6)) then the values (s) of t for whi...

    Text Solution

    |

  15. If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1, then A^...

    Text Solution

    |

  16. If A=[((1)/(2)(e^(ix)+e^(-ix)),(1)/(2)(e^(ix)-e^(-ix))),((1)/(2)(e^(ix...

    Text Solution

    |

  17. If A= [(ab,b^(2)),(-a^(2),-ab)] then A^(2) is equal

    Text Solution

    |

  18. If A is 2xx2 matrix such that A^(2) =O then tr (A) is

    Text Solution

    |

  19. If A = [(a,b),(c,d)] such that A satisfies the relation A^(2)-(a+d) A=...

    Text Solution

    |

  20. If A =[(3,2),(0,1)] then A^(-3) is

    Text Solution

    |