Home
Class 12
MATHS
If A = [(0,-i),(i,0)] B = [(1,0),(0,-1)]...

If A = `[(0,-i),(i,0)] B = [(1,0),(0,-1)]` then A B+ BA is

A

null matrix

B

unit matrix

C

invertible matrix

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the products of matrices A and B, specifically \( AB + BA \). Given: \[ A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \] \[ B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \] ### Step 1: Calculate \( AB \) To find \( AB \), we multiply matrix A by matrix B: \[ AB = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \] Calculating each element of the resulting matrix: - First row, first column: \[ 0 \cdot 1 + (-i) \cdot 0 = 0 \] - First row, second column: \[ 0 \cdot 0 + (-i) \cdot (-1) = i \] - Second row, first column: \[ i \cdot 1 + 0 \cdot 0 = i \] - Second row, second column: \[ i \cdot 0 + 0 \cdot (-1) = 0 \] Thus, we have: \[ AB = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \] ### Step 2: Calculate \( BA \) Next, we calculate \( BA \) by multiplying matrix B by matrix A: \[ BA = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \] Calculating each element of the resulting matrix: - First row, first column: \[ 1 \cdot 0 + 0 \cdot i = 0 \] - First row, second column: \[ 1 \cdot (-i) + 0 \cdot 0 = -i \] - Second row, first column: \[ 0 \cdot 0 + (-1) \cdot i = -i \] - Second row, second column: \[ 0 \cdot (-i) + (-1) \cdot 0 = 0 \] Thus, we have: \[ BA = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \] ### Step 3: Calculate \( AB + BA \) Now, we add the matrices \( AB \) and \( BA \): \[ AB + BA = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} + \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \] Calculating each element of the resulting matrix: - First row, first column: \[ 0 + 0 = 0 \] - First row, second column: \[ i + (-i) = 0 \] - Second row, first column: \[ i + (-i) = 0 \] - Second row, second column: \[ 0 + 0 = 0 \] Thus, we have: \[ AB + BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Final Answer: \[ AB + BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL -2 ) ( single Correct Answer Type Questions)|17 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|20 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept - based) (Single Correct Answer Type Questions)|10 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0,),(2,0)] and B=[(0,0),(1,12)] then= (A) AB=0, BA=0 (B) AB=0,BA!=0 (C) AB!=0,BA=0 (D) AB!=0,BA!=)

If A=[(1,0),(0,3)] and B=[(2,0),(0,1)] then show AB =BA =[(2,0),(0,3)]

If A = [(-1,2),(3,1)],B=[(1,0),(-1,0)] then the value of 2A+B+2I=

Let A = [{:(1,0),(0,-1):}]and B =[{:(1,x),(0,1):}] If AB = BA, then what is the value of x ?

If P=[(i,0,-i),(0,-i,i),(-i,i,0)] and Q=[(-i,i),(0,0),(i,-i)] then PQ is equal to (A) [(-2,2),(1,-1),(1,-1)] (B) [(2,-2),(-1,-1),(-1,1)] (C) [(2,2),(-1,1)] (D) [(1,0,0),(0,1,0),(0,0,1)]

If A=[{:(3,1),(0,4):}] and B = [{:(1,1),(0,2):}] , then which of the following is/are correct ? I. AB is defined II. BA is defined III. AB=BA Select the correct answer using the code given below :

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

If A=[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)] then (A) A^2=I (B) A^2=0 (C) A^3=0 (D) none of these

MCGROW HILL PUBLICATION-MATRICES-EXERCISE ( LEVEL -1) (Single Correct Answer Type Questions)
  1. Let A and B be square matrices of the same order. Does (A+B)^2=A^2+...

    Text Solution

    |

  2. If [(I,0),(3,-i)]+X = [(I,2),(3,4+i)] -X then X is equal to

    Text Solution

    |

  3. If A = [(0,-i),(i,0)] B = [(1,0),(0,-1)] then A B+ BA is

    Text Solution

    |

  4. A =[(1,2,3),(1,2,3),(-1,-2,-3)] then A is a nilpotent matrix of index

    Text Solution

    |

  5. If A is a 2xx2 unitary matrix then |A| is equal to

    Text Solution

    |

  6. If A= (1)/(2) ((-1,-sqrt(3)),(sqrt(3),-1)) then A^(-1)- A^(2) is equal...

    Text Solution

    |

  7. If C is a 3xx3 matrix satisfying the relation C^(2)+C=I then C^(-2) is...

    Text Solution

    |

  8. If A , B and C are three square matrices of the same size such that B ...

    Text Solution

    |

  9. If X is a 2 xx 3 matrix such that |X' X|!=0 and A = I2 - X(X' X)^(-1) ...

    Text Solution

    |

  10. The matrix A =((p,-q),(q,p)) is orthogonal if and only if

    Text Solution

    |

  11. The values of lambda for which the matrix A =((lambda ,0 ,lambda),(la...

    Text Solution

    |

  12. The values of a for which the matrix A = ((a,a^(2)-1,-3),(a+1,2,a^(...

    Text Solution

    |

  13. Let A(t)=((1,3,2),(2,5,t),(4,7-t,-6)) then the values (s) of t for whi...

    Text Solution

    |

  14. If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1, then A^...

    Text Solution

    |

  15. If A=[((1)/(2)(e^(ix)+e^(-ix)),(1)/(2)(e^(ix)-e^(-ix))),((1)/(2)(e^(ix...

    Text Solution

    |

  16. If A= [(ab,b^(2)),(-a^(2),-ab)] then A^(2) is equal

    Text Solution

    |

  17. If A is 2xx2 matrix such that A^(2) =O then tr (A) is

    Text Solution

    |

  18. If A = [(a,b),(c,d)] such that A satisfies the relation A^(2)-(a+d) A=...

    Text Solution

    |

  19. If A =[(3,2),(0,1)] then A^(-3) is

    Text Solution

    |

  20. If A is a skew Hermitian matrix then the main diagonal elements of A a...

    Text Solution

    |