Home
Class 12
MATHS
If A= (1)/(2) ((-1,-sqrt(3)),(sqrt(3),-1...

If `A= (1)/(2) ((-1,-sqrt(3)),(sqrt(3),-1))` then `A^(-1)- A^(2)` is equal to a

A

null matrix

B

invertible matrix

C

unit matrix

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^{-1} - A^2 \) for the given matrix \( A \). ### Step 1: Define the matrix \( A \) Given: \[ A = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \] We can simplify this to: \[ A = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \] ### Step 2: Calculate the determinant of \( A \) The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated as: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = -\frac{1}{2} \) - \( b = -\frac{\sqrt{3}}{2} \) - \( c = \frac{\sqrt{3}}{2} \) - \( d = -\frac{1}{2} \) Calculating the determinant: \[ \text{det}(A) = \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right) - \left(-\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) \] \[ = \frac{1}{4} - \frac{3}{4} = -\frac{2}{4} = -\frac{1}{2} \] ### Step 3: Calculate the inverse of \( A \) The inverse of a 2x2 matrix is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Substituting the values: \[ A^{-1} = \frac{1}{-\frac{1}{2}} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \] \[ = -2 \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \] \[ = \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} \] ### Step 4: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \] Calculating each element: - First row, first column: \[ -\frac{1}{2} \cdot -\frac{1}{2} + -\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{1}{4} - \frac{3}{4} = -\frac{2}{4} = -\frac{1}{2} \] - First row, second column: \[ -\frac{1}{2} \cdot -\frac{\sqrt{3}}{2} + -\frac{\sqrt{3}}{2} \cdot -\frac{1}{2} = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \] - Second row, first column: \[ \frac{\sqrt{3}}{2} \cdot -\frac{1}{2} + -\frac{1}{2} \cdot \frac{\sqrt{3}}{2} = -\frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = -\frac{2\sqrt{3}}{4} = -\frac{\sqrt{3}}{2} \] - Second row, second column: \[ \frac{\sqrt{3}}{2} \cdot -\frac{\sqrt{3}}{2} + -\frac{1}{2} \cdot -\frac{1}{2} = -\frac{3}{4} + \frac{1}{4} = -\frac{2}{4} = -\frac{1}{2} \] Thus, \[ A^2 = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \] ### Step 5: Calculate \( A^{-1} - A^2 \) Now we subtract \( A^2 \) from \( A^{-1} \): \[ A^{-1} - A^2 = \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} - \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \] Calculating each element: - First row, first column: \[ 1 - \left(-\frac{1}{2}\right) = 1 + \frac{1}{2} = \frac{3}{2} \] - First row, second column: \[ -\sqrt{3} - \frac{\sqrt{3}}{2} = -\frac{2\sqrt{3}}{2} - \frac{\sqrt{3}}{2} = -\frac{3\sqrt{3}}{2} \] - Second row, first column: \[ \sqrt{3} - \left(-\frac{\sqrt{3}}{2}\right) = \sqrt{3} + \frac{\sqrt{3}}{2} = \frac{2\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2} \] - Second row, second column: \[ 1 - \left(-\frac{1}{2}\right) = 1 + \frac{1}{2} = \frac{3}{2} \] Thus, \[ A^{-1} - A^2 = \begin{pmatrix} \frac{3}{2} & -\frac{3\sqrt{3}}{2} \\ \frac{3\sqrt{3}}{2} & \frac{3}{2} \end{pmatrix} \] ### Final Answer The result of \( A^{-1} - A^2 \) is: \[ \begin{pmatrix} \frac{3}{2} & -\frac{3\sqrt{3}}{2} \\ \frac{3\sqrt{3}}{2} & \frac{3}{2} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL -2 ) ( single Correct Answer Type Questions)|17 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|20 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept - based) (Single Correct Answer Type Questions)|10 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

1+2sqrt(3)-1sqrt(3)

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , then a+(1)/(a) is equal to

(-sqrt(3)/2 + sqrt(3))/(1/sqrt(2)-1)=

1-[(1+sqrt(3))/(2)-(1)/(sqrt(3)-1)] is

If x=(sqrt(3)+1)/(sqrt3-1)andy=(sqrt3-1)/(sqrt3+1),"then "x^(2)+y^(2) is equal to

Value of (-1+sqrt(-3))^(2)+(-1-sqrt(-3))^(2) is equal to

MCGROW HILL PUBLICATION-MATRICES-EXERCISE ( LEVEL -1) (Single Correct Answer Type Questions)
  1. A =[(1,2,3),(1,2,3),(-1,-2,-3)] then A is a nilpotent matrix of index

    Text Solution

    |

  2. If A is a 2xx2 unitary matrix then |A| is equal to

    Text Solution

    |

  3. If A= (1)/(2) ((-1,-sqrt(3)),(sqrt(3),-1)) then A^(-1)- A^(2) is equal...

    Text Solution

    |

  4. If C is a 3xx3 matrix satisfying the relation C^(2)+C=I then C^(-2) is...

    Text Solution

    |

  5. If A , B and C are three square matrices of the same size such that B ...

    Text Solution

    |

  6. If X is a 2 xx 3 matrix such that |X' X|!=0 and A = I2 - X(X' X)^(-1) ...

    Text Solution

    |

  7. The matrix A =((p,-q),(q,p)) is orthogonal if and only if

    Text Solution

    |

  8. The values of lambda for which the matrix A =((lambda ,0 ,lambda),(la...

    Text Solution

    |

  9. The values of a for which the matrix A = ((a,a^(2)-1,-3),(a+1,2,a^(...

    Text Solution

    |

  10. Let A(t)=((1,3,2),(2,5,t),(4,7-t,-6)) then the values (s) of t for whi...

    Text Solution

    |

  11. If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1, then A^...

    Text Solution

    |

  12. If A=[((1)/(2)(e^(ix)+e^(-ix)),(1)/(2)(e^(ix)-e^(-ix))),((1)/(2)(e^(ix...

    Text Solution

    |

  13. If A= [(ab,b^(2)),(-a^(2),-ab)] then A^(2) is equal

    Text Solution

    |

  14. If A is 2xx2 matrix such that A^(2) =O then tr (A) is

    Text Solution

    |

  15. If A = [(a,b),(c,d)] such that A satisfies the relation A^(2)-(a+d) A=...

    Text Solution

    |

  16. If A =[(3,2),(0,1)] then A^(-3) is

    Text Solution

    |

  17. If A is a skew Hermitian matrix then the main diagonal elements of A a...

    Text Solution

    |

  18. If A =[(1,2,1),(0,1,-1),(3,-1,1)] and AA' =I , then x+y is equal to

    Text Solution

    |

  19. If 3A =[(1,2,2),(2,1,-2),(x,2,y)] and A'A =I then x+y is equal to

    Text Solution

    |

  20. If the system of equations ax +y=3,x+2y=3 , 3x+4y=7 is consistent then...

    Text Solution

    |