Home
Class 12
MATHS
Let a,b,c in R be such that a+b+c gt 0 a...

Let a,b,c `in` R be such that a+b+c `gt` 0 and abc = 2 . Let
`A = [(a,b,c),(b,c,a),(c,a,b)]`
If `A^(2)=I` then value of `a^(3)+b^(3)+c^(3)` is

A

7

B

2

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the matrix \( A \) and the conditions given. Let's break it down step by step. ### Step 1: Define the Matrix \( A \) The matrix \( A \) is defined as: \[ A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \cdot \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \[ a^2 + b^2 + c^2 \] - First row, second column: \[ ab + bc + ca \] - First row, third column: \[ ac + ba + cb \] - Second row, first column: \[ ba + cb + ac \] - Second row, second column: \[ b^2 + c^2 + a^2 \] - Second row, third column: \[ bc + ca + ab \] - Third row, first column: \[ ca + ab + bc \] - Third row, second column: \[ cb + ac + ba \] - Third row, third column: \[ c^2 + a^2 + b^2 \] Thus, we have: \[ A^2 = \begin{pmatrix} a^2 + b^2 + c^2 & ab + bc + ca & ac + ba + cb \\ ba + cb + ac & b^2 + c^2 + a^2 & bc + ca + ab \\ ca + ab + bc & cb + ac + ba & c^2 + a^2 + b^2 \end{pmatrix} \] ### Step 3: Set \( A^2 = I \) Given that \( A^2 = I \), where \( I \) is the identity matrix, we have: \[ \begin{pmatrix} a^2 + b^2 + c^2 & ab + bc + ca & ac + ba + cb \\ ba + cb + ac & b^2 + c^2 + a^2 & bc + ca + ab \\ ca + ab + bc & cb + ac + ba & c^2 + a^2 + b^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] From this, we can derive the following equations: 1. \( a^2 + b^2 + c^2 = 1 \) 2. \( ab + bc + ca = 0 \) ### Step 4: Use the Identity for Cubes We can use the identity for the sum of cubes: \[ a^3 + b^3 + c^3 = (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc) \] ### Step 5: Substitute Known Values From the equations we derived: - \( a^2 + b^2 + c^2 = 1 \) - \( ab + ac + bc = 0 \) Thus, \[ a^2 + b^2 + c^2 - ab - ac - bc = 1 - 0 = 1 \] Now, substituting into the identity: \[ a^3 + b^3 + c^3 = (a + b + c)(1) \] ### Step 6: Find \( a + b + c \) Given \( a + b + c > 0 \) and \( abc = 2 \), we can use the fact that \( a, b, c \) are the roots of the polynomial \( x^3 - (a+b+c)x^2 + (ab+ac+bc)x - abc = 0 \). Since \( ab + ac + bc = 0 \) and \( abc = 2 \), we have: \[ x^3 - (a+b+c)x^2 - 2 = 0 \] ### Step 7: Conclusion Since we don't have specific values for \( a, b, c \), we can conclude that: \[ a^3 + b^3 + c^3 = (a + b + c) \] Thus, the value of \( a^3 + b^3 + c^3 \) is dependent on \( a + b + c \), which is greater than 0. ### Final Answer The value of \( a^3 + b^3 + c^3 \) is \( a + b + c \), which is greater than 0.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|20 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE /JEE Main Papers|71 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL -1) (Single Correct Answer Type Questions)|43 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

What is the value of |{:(a,b,c),(b,c,a),(c,a,b):}| "if a"^(3) + b^(3) + c^(3) = 0 ?

Let a, b, c in R be all non-zero and satisfy a^(3)+b^(3)+c^(3)=2 . If the matrix A=((a,b,c),(b,c,a),(c,a,b)) satisfies A^(T)A=I , then a value of abc can be :

5. Let [(a,b,c),(b,c,a),(c,a,b)] , where a+b+ c>0 and abc=1 .if A^TA=Ithen the value of (a^3+b^3+c^3)/4 is (A)1 (B)2 (C)0 (D) 4

Prove that : |{:(a+b,b,c),(b+c,c,a),(c+a,a,b):}|=3 abc-a^(3)-b^(3)-c^(3)

If (a-b)=3,(b-c)=5 and (c-a)=1 then the value of (a^(3)+b^(3)+c^(3)-3abc)/(a+b+c) is?

If a+b+c=15 and a^(2)+b^(2)+c^(2)=83 find the value of a^(3)+b^(3)+c^(3)-3abc

If a+b+c=15 and a^(2)+b^(2)+c^(2)=83 find the value of a^(3)+b^(3)+c^(3)-3abc

If a+b+c=9 and a^(2)+b^(2)+c^(2)=35, find the value of a^(3)+b^(3)+c^(3)-3abc

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The value of a^(3) + b^(3)+c^(3) is

MCGROW HILL PUBLICATION-MATRICES-EXERCISE ( LEVEL -2 ) ( single Correct Answer Type Questions)
  1. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  2. If a,b,c ne0 and a+b+c=0 then the matrix [(1+(1)/(a),1,1),(1,1+(1)/(...

    Text Solution

    |

  3. Suppose matrix A satisfies the equation A^(2) -5A +7I=O . If A^(8)=aA+...

    Text Solution

    |

  4. If alpha, beta, gamma are three real numbers and A=[(1,cos (alpha-beta...

    Text Solution

    |

  5. Let A(theta)= ((sin theta,i costheta),(icostheta, sin theta)), then

    Text Solution

    |

  6. Let A and B are two matrices such that AB = BA, then for every n in ...

    Text Solution

    |

  7. Let A=[{:(1,2,1),(0,1,-1),(3,1,1):}]. Find the sum of all the value of...

    Text Solution

    |

  8. Let a,b,c in R be such that a+b+c gt 0 and abc = 2 . Let A = [(a,b,c...

    Text Solution

    |

  9. If A is a 3xx3 skew -symmetric matrix with real entries and trace of A...

    Text Solution

    |

  10. Suppose A and B are two 3xx3 non -singular matrices such that (AB)^(...

    Text Solution

    |

  11. Let A be a square matrix of order 3 such that |Adj A | =100 then |A| ...

    Text Solution

    |

  12. Let M be a 3xx3 matrix satisfying M[{:(0),(1),(0):}]=[{:(-1),(2),(3):}...

    Text Solution

    |

  13. If A , B and A+B are non -singular matrices then (A^(-1)+B^(-1)) [(A...

    Text Solution

    |

  14. If A+B is a non -singular matrix then A-B -A(A+B)^(-1)A+B(A+B)^(-1) ...

    Text Solution

    |

  15. If A and B are two matrices such that A+B =AB , then

    Text Solution

    |

  16. Let A=((a,b), (c,d)) such that A^3=0, then a+d equals

    Text Solution

    |

  17. Let A = ((0,x,0),(y,0,-x),(0,y,0)) then A^(3) equals

    Text Solution

    |