Home
Class 12
MATHS
Suppose (alpha,beta,gamma) lie on the pl...

Suppose `(alpha,beta,gamma)` lie on the plane 2x+y+z=1 and `[alpha,beta,gamma][(1,9,1),(7,2,1),(8,3,1)]=[0,0,0]` then `alpha +beta^(2)+gamma^(2)` = _____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the values of \( \alpha \), \( \beta \), and \( \gamma \) given the conditions and then calculate \( \alpha + \beta^2 + \gamma^2 \). ### Step 1: Understand the plane equation We know that \( \alpha, \beta, \gamma \) lie on the plane defined by the equation: \[ 2\alpha + \beta + \gamma = 1 \] ### Step 2: Set up the matrix equation We also have the matrix equation: \[ [\alpha, \beta, \gamma] \begin{pmatrix} 1 & 9 & 1 \\ 7 & 2 & 1 \\ 8 & 3 & 1 \end{pmatrix} = [0, 0, 0] \] This expands to three equations: 1. \( \alpha + 9\beta + \gamma = 0 \) (Equation 1) 2. \( 7\alpha + 2\beta + \gamma = 0 \) (Equation 2) 3. \( 8\alpha + 3\beta + \gamma = 0 \) (Equation 3) ### Step 3: Solve the equations From Equation 1, we can express \( \gamma \) in terms of \( \alpha \) and \( \beta \): \[ \gamma = -\alpha - 9\beta \] Substituting this into Equation 2: \[ 7\alpha + 2\beta + (-\alpha - 9\beta) = 0 \] This simplifies to: \[ 6\alpha - 7\beta = 0 \implies 6\alpha = 7\beta \implies \beta = \frac{6}{7}\alpha \] Now substitute \( \beta \) back into the expression for \( \gamma \): \[ \gamma = -\alpha - 9\left(\frac{6}{7}\alpha\right) = -\alpha - \frac{54}{7}\alpha = -\frac{61}{7}\alpha \] ### Step 4: Substitute into the plane equation Now substitute \( \beta \) and \( \gamma \) into the plane equation: \[ 2\alpha + \frac{6}{7}\alpha - \frac{61}{7}\alpha = 1 \] Combining the terms: \[ 2\alpha + \frac{6\alpha - 61\alpha}{7} = 1 \implies 2\alpha - \frac{55}{7}\alpha = 1 \] To eliminate the fraction, multiply through by 7: \[ 14\alpha - 55\alpha = 7 \implies -41\alpha = 7 \implies \alpha = -\frac{7}{41} \] ### Step 5: Find \( \beta \) and \( \gamma \) Now substitute \( \alpha \) back to find \( \beta \) and \( \gamma \): \[ \beta = \frac{6}{7}\left(-\frac{7}{41}\right) = -\frac{6}{41} \] \[ \gamma = -\frac{61}{7}\left(-\frac{7}{41}\right) = \frac{61}{41} \] ### Step 6: Calculate \( \alpha + \beta^2 + \gamma^2 \) Now we calculate \( \alpha + \beta^2 + \gamma^2 \): \[ \beta^2 = \left(-\frac{6}{41}\right)^2 = \frac{36}{1681} \] \[ \gamma^2 = \left(\frac{61}{41}\right)^2 = \frac{3721}{1681} \] Now, adding these: \[ \alpha + \beta^2 + \gamma^2 = -\frac{7}{41} + \frac{36}{1681} + \frac{3721}{1681} \] Convert \( -\frac{7}{41} \) to a fraction with a denominator of 1681: \[ -\frac{7}{41} = -\frac{7 \times 41}{41 \times 41} = -\frac{287}{1681} \] Now combine: \[ -\frac{287}{1681} + \frac{36 + 3721}{1681} = -\frac{287}{1681} + \frac{3757}{1681} = \frac{3757 - 287}{1681} = \frac{3470}{1681} \] ### Final Answer Thus, \( \alpha + \beta^2 + \gamma^2 = \frac{3470}{1681} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE /JEE Main Papers|71 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B -Architecture Entrance Examination Papers|22 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL -2 ) ( single Correct Answer Type Questions)|17 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

Let alpha,beta, gamma be three real numbers satisfying [(alpha,beta,gamma)][(2,-1,1),(-1,-1,-2),(-1,2,1)]=[(0,0,0)] . If the point A(alpha, beta, gamma) lies on the plane 2x+y+3z=2 , then 3alpha+3beta-6gamma is equal to

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-3x-1=0 then alpha^(-2)+beta^(-2)+gamma^(-2)=

If alpha ,beta, gamma are the roots of 2x^(3)-2x-1=0 then (sum alpha beta)^(2)

If alpha ,beta ,gamma are roots of x^(3)+x^(2)-5x-1=0 then [alpha] + [beta] +[ gamma ] is equal to

If alpha beta gamma are roots of x^(3)+x^(2)-5x-1=0 then alpha + beta + gamma is equal to

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=

If alpha,beta,gamma are such that alpha+beta+gamma=2alpha^(2)+beta^(2)+gamma^(2)=6,alpha^(3)+beta^(3)+gamma^(3)=8, then alpha^(4)+beta^(4)+gamma^(4)

If alpha beta gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

Statement 1: If point (alpha, beta, gamma) lies above the plane (a^(2)+1)x+(b+1)y+(c^(2)+c+1)z+d=0 , then (a^(2)+1)alpha+(b+1)beta+(c^(2)+c+1)gamma+d gt 0 . because Statement 2: If the point (alpha, beta, gamma) lies above the plane ax+by+cz+d=0 then (a alpha+b beta+c gamma+d)/( c )gt 0 .

MCGROW HILL PUBLICATION-MATRICES-EXERCISE (Numerical Answer Type Questions)
  1. A = ((2.1,2.5,3.7),(-2.1,5.9,3.8),(0,-2.9,-3)),B=((cosalpha,sinalpha,0...

    Text Solution

    |

  2. Sum of the values of t in C for which the matrix ((1+t,3,2),(2,5,t),(4...

    Text Solution

    |

  3. If the system of linear equations given by x+y+z=3 2x+y-z=3 x+y-...

    Text Solution

    |

  4. Suppose A and B are two 3xx3 matrices then det [(A-A) + (B-B)] =

    Text Solution

    |

  5. If the system of linear equations x+2ky+3z=0 3x+2ky-2z=0 2x+4y ...

    Text Solution

    |

  6. Suppose (alpha,beta,gamma) lie on the plane 2x+y+z=1 and [alpha,beta,g...

    Text Solution

    |

  7. Let A = [(-1,2,0),(3,1,5),(-1,2,-1)] then det ((1)/(10)adj (adj A))=

    Text Solution

    |

  8. Suppose p , q,r in R pqr ne 0. Let A= ((0,2q,r),(p,q,-r),(p,-q,r)) I...

    Text Solution

    |

  9. Suppose a in R and a ne 0 . Let P =[(1,0,0),(a,1,0),(a^(2),a,1)] and...

    Text Solution

    |

  10. Suppose [(1,1),(0,1)][(1,2),(0,1)][(1,3),(0,1)]cdots[(1,n),(0,1)]=[(...

    Text Solution

    |

  11. Let A be a 2xx2 matrix such that det(A^(2)+4I(2))=0 then det(A) + ...

    Text Solution

    |

  12. Suppose a ,b,c gt=0 and ((a+1)(b+1))/((a+2)(b+2))+((b+1)(c+1))/((b+...

    Text Solution

    |

  13. Let A = ((a,b),(c,d)) ,a,b,c,d in R , a+d ne 4 . If A satisfies A^(2)-...

    Text Solution

    |

  14. Suppose sum(n=1)^(oo)(1)/((n+2)sqrt(n)+nsqrt(n+2))=(sqrt(b)+sqrt(c))/(...

    Text Solution

    |

  15. Suppose A = (a(ij))(3xx3) be a symmetric matrix . If S = {a(ij) 1 lt=...

    Text Solution

    |

  16. Let A =((a,b),(c,d)) ,a,b,c,d in R . Suppose there exists x(1),x(2) in...

    Text Solution

    |

  17. Let A be an upper triangular 3xx3 real matrices such that det (A) =0 d...

    Text Solution

    |

  18. Let A and B be two 3xx3 real matrices such that AB = BA and det (A^(2)...

    Text Solution

    |

  19. Let A = ((a,b),(c,d)) ,a,b,c,d in R , a+d ne 7. If n is the number o...

    Text Solution

    |

  20. Let A be a 3xx3 matrix such that (A-2.2I(3))(A-3.8 I(3))=O(3xx3) then ...

    Text Solution

    |