Home
Class 12
MATHS
The values of parameter a for which the ...

The values of parameter `a` for which the point of minimum of the function `f(x)=1+a^2x-x^3` satisfies the inequality `(x^2+x+2)/(x^2+5x+6)<0a r e` `(2sqrt(3),3sqrt(3))` (b) `-3sqrt(3),-2sqrt(3))` `(-2sqrt(3),3sqrt(3))` (d) `(-2sqrt(2),2sqrt(3))`

A

an empty set

B

`(-3 sqrt3, -2 sqrt3)`

C

`(2 sqrt3, 3 sqrt3)`

D

`(-3 sqrt3, -2 sqrt3) uu (2 sqrt3, 3 sqrt3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MCGROW HILL PUBLICATION|Exercise Solved Examples ( LEVEL -2 SINGLE CORRECT ANSWER TYPE QUESTIONS )|25 Videos
  • APPLICATIONS OF DERIVATIVES

    MCGROW HILL PUBLICATION|Exercise Solved Examples ( NUMERICAL ANSWER TYPE QUESTIONS )|18 Videos
  • APPLICATIONS OF DERIVATIVES

    MCGROW HILL PUBLICATION|Exercise Solved Examples ( CONCEPT - BASED SINGLE CORRECT ANSWER TYPE QUESTIONS )|10 Videos
  • AREA BY INTEGRATION

    MCGROW HILL PUBLICATION|Exercise Question from Previous Years. B-Architecture Entrance Examination Papers|12 Videos

Similar Questions

Explore conceptually related problems

The values of parameter a for which the point of minimum of the function f(x)=1+a^(2)x-x^(3) satisfies the inequality (x^(2)+x+2)/(x^(2)+5x+6)<0 are (2sqrt(3),3sqrt(3))(b)-3sqrt(3),-2sqrt(3))(-2sqrt(3),3sqrt(3))(d)(-2sqrt(2),2sqrt(3))

The minimum value of the function f(x) = 2|x - 1| + |x - 2| is

The minimum value of the function f (x) =x^(3) -3x^(2) -9x+5 is :

The function f(x)=2x^3-3x^2-12x+5 has a minimum at x=

Find the domain of the function , f(x)=(x^2 +2x +3)/(x^2 -5x +6)

The minimum value of x which satisfies the inequality (sin^(-1)x)^(2)ge(cos^(-1)x)^(2) is

Find the number of integral values of x satisfying the inequality, x^2-5x-6<0 .

Find the values of the parameter a such that the rots alpha,beta of the equation 2x^(2)+6x+a=0 satisfy the inequality alpha/ beta+beta/ alpha<2

Determine the maximum and minimum values of the function f(x) = 2x^(3) - 21 x^(2) + 36x-20

MCGROW HILL PUBLICATION-APPLICATIONS OF DERIVATIVES-Solved Examples ( LEVEL -1 SINGLE CORRECT ANSWER TYPE QUESTIONS )
  1. if f(x)=(sin (x+alpha)/(sin(x+beta),alpha ne beta then f(x) has

    Text Solution

    |

  2. The tangent to the curve y= x^(3) -6x^(2) + 9x + 4, 0 le x le 5 has ma...

    Text Solution

    |

  3. The values of parameter a for which the point of minimum of the functi...

    Text Solution

    |

  4. Find the point of intersection of the tangents drawn to the curve x...

    Text Solution

    |

  5. The equation of the tangent to the curve y=(2x-1)e^(2(1-x)) at the p...

    Text Solution

    |

  6. If the function f(x) = x^(2) + alpha//x has a local minimum at x=2, th...

    Text Solution

    |

  7. Three normals are drawn to the parabola y^(2) = 4x from the point (c,0...

    Text Solution

    |

  8. The function f(x)=[log (x-1)]^(2) (x-1)^(2) has :

    Text Solution

    |

  9. If f(x) = log x satisfies Lagrange's theorem on [1,e] then value of c ...

    Text Solution

    |

  10. The value of c for which the conclusion of Lagrange's theorem holds fo...

    Text Solution

    |

  11. Let f(x) {(|x-2| +a",","if" x le 2),(4x^(2) + 3x +1",","if" x gt 2):}....

    Text Solution

    |

  12. If y = mx + 2 is parallel to a tangent to curve e^(4y) =1 + 16x^(2) th...

    Text Solution

    |

  13. Given the function f(x) = x^(2) e^(-2x), x gt 0. Then f(x) has the max...

    Text Solution

    |

  14. if f(x)=(x -4) (x-5) (x-6) (x-7) then.

    Text Solution

    |

  15. If f(x)=(x^2-1)/(x^2+1) . For every real number x , then the minimum v...

    Text Solution

    |

  16. For all x in (0,1)

    Text Solution

    |

  17. Let h(x)=f(x)-(f(x))^2+(f(x))^3 for every real x. Then,

    Text Solution

    |

  18. Let f(x) = ax^(3) + bx^(2) + cx + d, b^(2) - 3ac gt 0, a gt 0, c lt 0...

    Text Solution

    |

  19. If f(x)={{:(3-x^(2)",",xle2),(sqrt(a+14)-|x-48|",",xgt2):} and if f(x)...

    Text Solution

    |

  20. The total number of local maxima and local minima of the function f(x)...

    Text Solution

    |