Home
Class 12
MATHS
The function f(X) = int((x-2)dx)/(x^(2)-...

The function f(X) = `int((x-2)dx)/(x^(2)-7x+12)`

A

decreases on R

B

increases on `R~ (2,3)`

C

increases on `[2,3) cup (4, oo)`

D

decreases on `(2, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \int \frac{x-2}{x^2 - 7x + 12} \, dx \) and determine where it is increasing or decreasing. ### Step-by-Step Solution: 1. **Identify the Function**: The function given is: \[ f(x) = \int \frac{x-2}{x^2 - 7x + 12} \, dx \] 2. **Differentiate the Function**: To find where the function is increasing or decreasing, we need to find the derivative \( f'(x) \). By the Fundamental Theorem of Calculus, we have: \[ f'(x) = \frac{x-2}{x^2 - 7x + 12} \] 3. **Factor the Denominator**: We can factor the denominator: \[ x^2 - 7x + 12 = (x-3)(x-4) \] Thus, we can rewrite \( f'(x) \) as: \[ f'(x) = \frac{x-2}{(x-3)(x-4)} \] 4. **Determine Critical Points**: The critical points occur where \( f'(x) = 0 \) or where \( f'(x) \) is undefined. - Setting the numerator to zero: \[ x - 2 = 0 \implies x = 2 \] - The denominator is undefined at: \[ (x-3)(x-4) = 0 \implies x = 3 \text{ and } x = 4 \] 5. **Test Intervals**: We will test the sign of \( f'(x) \) in the intervals determined by the critical points \( x = 2, 3, 4 \): - Intervals: \( (-\infty, 2) \), \( (2, 3) \), \( (3, 4) \), \( (4, \infty) \) - **Interval \( (-\infty, 2) \)**: Choose \( x = 0 \): \[ f'(0) = \frac{0-2}{(0-3)(0-4)} = \frac{-2}{12} < 0 \quad \text{(decreasing)} \] - **Interval \( (2, 3) \)**: Choose \( x = 2.5 \): \[ f'(2.5) = \frac{2.5-2}{(2.5-3)(2.5-4)} = \frac{0.5}{(-0.5)(-1.5)} > 0 \quad \text{(increasing)} \] - **Interval \( (3, 4) \)**: Choose \( x = 3.5 \): \[ f'(3.5) = \frac{3.5-2}{(3.5-3)(3.5-4)} = \frac{1.5}{(0.5)(-0.5)} < 0 \quad \text{(decreasing)} \] - **Interval \( (4, \infty) \)**: Choose \( x = 5 \): \[ f'(5) = \frac{5-2}{(5-3)(5-4)} = \frac{3}{(2)(1)} > 0 \quad \text{(increasing)} \] 6. **Summarize the Results**: - \( f(x) \) is decreasing on \( (-\infty, 2) \) and \( (3, 4) \). - \( f(x) \) is increasing on \( (2, 3) \) and \( (4, \infty) \). ### Conclusion: The function \( f(x) \) is increasing on the intervals \( [2, 3) \) and \( (4, \infty) \), and decreasing on the intervals \( (-\infty, 2) \) and \( (3, 4) \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( NUMERICAL ANSWER TYPE QUESTION )|15 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS.AIEEE/JEE MAIN PAPERS|35 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 (SINGLE CORRECT ANSWER TYPE QUESTION ))|35 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int((7x+5)dx)/(x^(3)+2x^(2)-x-2)

int(dx)/(sqrt(2x^(2)+7x+13))

Let f(x) be a function defined by f(x)=int_(1)^(x)x(x^(2)-3x+2)dx,1<=x<=4 Then,the

int(7x-8)/(x(x-1)^(2))dx

The range of the function f(x)=(e^(x)*logx*5^(x^(2)+2)*(x^(2)-7x+10))/(2x^(2)-11x+12) is

int(f'(x))/([f(x)]^(2))dx=

int(x^2-3)/(x^3-7x+6)dx

Domain of the function f(x)=log|x^(2)-7x+12|

" (1) "int(x^(2)+7x+4)/(x^(3)+x^(2)-x-1)dx

Verify Rolle's theorem for each of the following functions : f(x) = x^(3) - 7x^(2) + 16x - 12 " in " [2, 3]

MCGROW HILL PUBLICATION-INDEFINITE INTEGRATION-EXERCISE (LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))
  1. If f(x) = int (x^(3) - 2x^(2) + 3)e^(3x) dx then the number of critica...

    Text Solution

    |

  2. If f(x) = int(3x+2)/(x^(4)-x^(3)+x^(2)-1)dx then f(x) has

    Text Solution

    |

  3. The function f(X) = int((x-2)dx)/(x^(2)-7x+12)

    Text Solution

    |

  4. If f(x) = sin x then int(e^(f(x))(xcos^(3)x-f(x)))/(1-(f(x))^(2))dx is...

    Text Solution

    |

  5. int(4e^x+6e^(-x))/(9e^x-4e^(-x))dx

    Text Solution

    |

  6. Let f be a continuous function satisfying f(x + y) = f (x) f( y) (x, y...

    Text Solution

    |

  7. int(x^7)/(x^4+1)dx

    Text Solution

    |

  8. The function f whose graph passes through (0,0) and whose derivative i...

    Text Solution

    |

  9. Let P(x) be a polynomial of degree n with leading coefficient 1. Let v...

    Text Solution

    |

  10. If int(x+1)/((x^(2)+x+1))(dx)/(sqrt(x^(2)+x+1))=K(x-1)/(sqrt(x^(2)+x+1...

    Text Solution

    |

  11. Let f be a continuous function satisfying f (x+y) = f (x) + f (y), for...

    Text Solution

    |

  12. The value of int(dx)/(4sqrt((x-1)^(3)(x+2^(2)))) is

    Text Solution

    |

  13. int(cos4x-1)/(cotx-tanx)dx is equal to

    Text Solution

    |

  14. If f(x) = lim(n->oo)(x^n-x^(-n))/(x^n+x^(-n)), x >1 then int(xf(x)l...

    Text Solution

    |

  15. The value of int sin 3sqrt(x) dx is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x) = f(x) and f(0) = 2. Then int(...

    Text Solution

    |

  17. If int(f(x))/(x^(2)-x+1)dx=(3)/(2)log(x^(2)-x+1)+(1)/(sqrt(3))tan^(-1)...

    Text Solution

    |

  18. If the antiderivative of (1)/(x^(2)sqrt(1+x^(2))) is -sqrt(f(x))/(x)+C...

    Text Solution

    |

  19. intdx/cos^3xsqrt(sin2x)

    Text Solution

    |

  20. If f(x) = sqrt(x),g(x) = e^(x) - 1 and h(x) = tan^(-1)x then the antid...

    Text Solution

    |