Home
Class 12
MATHS
If f(x) = sin x then int(e^(f(x))(xcos^(...

If f(x) = sin x then `int(e^(f(x))(xcos^(3)x-f(x)))/(1-(f(x))^(2))dx` is equal to

A

`e^(f(x))(x-sinx)+C`

B

`e^(f(x))(x-secx)+C`

C

`e^(f(x))(x+secx)+C`

D

`e^(f(x))(x+sec^(2))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{e^{f(x)}(x \cos^3 x - f(x))}{1 - (f(x))^2} \, dx \] where \( f(x) = \sin x \), we will follow these steps: ### Step 1: Substitute \( f(x) \) First, we substitute \( f(x) = \sin x \) into the integral: \[ I = \int \frac{e^{\sin x}(x \cos^3 x - \sin x)}{1 - \sin^2 x} \, dx \] ### Step 2: Simplify the Denominator Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \), we can simplify the denominator: \[ 1 - \sin^2 x = \cos^2 x \] Thus, the integral becomes: \[ I = \int \frac{e^{\sin x}(x \cos^3 x - \sin x)}{\cos^2 x} \, dx \] ### Step 3: Split the Integral We can split the integral into two parts: \[ I = \int e^{\sin x} \left( \frac{x \cos^3 x}{\cos^2 x} - \frac{\sin x}{\cos^2 x} \right) \, dx \] This simplifies to: \[ I = \int e^{\sin x} (x \cos x - \tan x) \, dx \] ### Step 4: Integration by Parts Now we will use integration by parts. Let: - \( u = e^{\sin x} \) and \( dv = (x \cos x - \tan x) \, dx \) Then we need to find \( du \) and \( v \): \[ du = e^{\sin x} \cos x \, dx \] To find \( v \), we need to integrate \( (x \cos x - \tan x) \): 1. Integrate \( x \cos x \) using integration by parts again. 2. The integral of \( \tan x \) is \( -\ln |\cos x| \). ### Step 5: Combine Results After performing the integration by parts, we will have: \[ I = e^{\sin x} \left( \text{result from } v \right) - \int \left( \text{result from } du \right) \] ### Step 6: Final Expression After simplifying and combining the results, we will arrive at: \[ I = e^{\sin x} \left( x - \sec x \right) + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ I = e^{f(x)} \left( x - \sec x \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( NUMERICAL ANSWER TYPE QUESTION )|15 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS.AIEEE/JEE MAIN PAPERS|35 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 (SINGLE CORRECT ANSWER TYPE QUESTION ))|35 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

If f (x) = cos x then int(2(f(x))^(2)-1)(4(f(x))^(3)-3 f (x)) dx is equal to

Let f:R rarr[0,oo) be a differentiable function so that f'(x) is continuous function then int((f(x)-f'(x))e^(x))/((e^(x)+f(x))^(2))dx is equal to

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

If int f(x)dx=f(x), then int{f(x)}^(2)dx is equal to

If f(x)+f(3-x)=0 ,then int_(0)^(3)1/(1+2^(f(x)))dx=

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

If int(e^(x)-1)/(e^(x)+1)dx=f(x)+C, then f(x) is equal to

MCGROW HILL PUBLICATION-INDEFINITE INTEGRATION-EXERCISE (LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))
  1. If f(x) = int(3x+2)/(x^(4)-x^(3)+x^(2)-1)dx then f(x) has

    Text Solution

    |

  2. The function f(X) = int((x-2)dx)/(x^(2)-7x+12)

    Text Solution

    |

  3. If f(x) = sin x then int(e^(f(x))(xcos^(3)x-f(x)))/(1-(f(x))^(2))dx is...

    Text Solution

    |

  4. int(4e^x+6e^(-x))/(9e^x-4e^(-x))dx

    Text Solution

    |

  5. Let f be a continuous function satisfying f(x + y) = f (x) f( y) (x, y...

    Text Solution

    |

  6. int(x^7)/(x^4+1)dx

    Text Solution

    |

  7. The function f whose graph passes through (0,0) and whose derivative i...

    Text Solution

    |

  8. Let P(x) be a polynomial of degree n with leading coefficient 1. Let v...

    Text Solution

    |

  9. If int(x+1)/((x^(2)+x+1))(dx)/(sqrt(x^(2)+x+1))=K(x-1)/(sqrt(x^(2)+x+1...

    Text Solution

    |

  10. Let f be a continuous function satisfying f (x+y) = f (x) + f (y), for...

    Text Solution

    |

  11. The value of int(dx)/(4sqrt((x-1)^(3)(x+2^(2)))) is

    Text Solution

    |

  12. int(cos4x-1)/(cotx-tanx)dx is equal to

    Text Solution

    |

  13. If f(x) = lim(n->oo)(x^n-x^(-n))/(x^n+x^(-n)), x >1 then int(xf(x)l...

    Text Solution

    |

  14. The value of int sin 3sqrt(x) dx is

    Text Solution

    |

  15. Let f(x) be a function satisfying f'(x) = f(x) and f(0) = 2. Then int(...

    Text Solution

    |

  16. If int(f(x))/(x^(2)-x+1)dx=(3)/(2)log(x^(2)-x+1)+(1)/(sqrt(3))tan^(-1)...

    Text Solution

    |

  17. If the antiderivative of (1)/(x^(2)sqrt(1+x^(2))) is -sqrt(f(x))/(x)+C...

    Text Solution

    |

  18. intdx/cos^3xsqrt(sin2x)

    Text Solution

    |

  19. If f(x) = sqrt(x),g(x) = e^(x) - 1 and h(x) = tan^(-1)x then the antid...

    Text Solution

    |

  20. If f(x) = sqrt(4x^(2)+4x-3) then int(x+3)/(f(x))dx is equal

    Text Solution

    |