Home
Class 12
MATHS
If f(x) = sqrt(4x^(2)+4x-3) then int(x+3...

If `f(x) = sqrt(4x^(2)+4x-3)` then `int(x+3)/(f(x))dx` is equal

A

(1/4) f(x) + (2/3) log | 2x + 1+ f(x)| + C

B

(1/4) f(x) + (5/4) log |2x + 1 + f(x)| + C

C

(1/3) f(x) + (2/3) log |(x+3)| + C

D

(2/3) f(x) + (1/3) log |(x+3) + f(x)|

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x + 3}{f(x)} \, dx\) where \(f(x) = \sqrt{4x^2 + 4x - 3}\), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{x + 3}{\sqrt{4x^2 + 4x - 3}} \, dx \] ### Step 2: Decompose the numerator We can express the numerator \(x + 3\) in terms of the derivative of the function inside the square root. We want to find constants \(a\) and \(b\) such that: \[ x + 3 = a(8x + 4) + b \] where \(8x + 4\) is the derivative of \(4x^2 + 4x - 3\). ### Step 3: Set up equations From the equation \(x + 3 = a(8x + 4) + b\), we can compare coefficients: 1. For \(x\): \(8a = 1\) → \(a = \frac{1}{8}\) 2. For the constant term: \(4a + b = 3\) Substituting \(a = \frac{1}{8}\) into the second equation: \[ 4 \cdot \frac{1}{8} + b = 3 \implies \frac{1}{2} + b = 3 \implies b = 3 - \frac{1}{2} = \frac{5}{2} \] ### Step 4: Rewrite the integral Now we can rewrite the integral \(I\) as: \[ I = \int \frac{1}{8}(8x + 4) \frac{1}{\sqrt{4x^2 + 4x - 3}} \, dx + \frac{5}{2} \int \frac{1}{\sqrt{4x^2 + 4x - 3}} \, dx \] This gives us: \[ I = \frac{1}{8} \int \frac{8x + 4}{\sqrt{4x^2 + 4x - 3}} \, dx + \frac{5}{2} \int \frac{1}{\sqrt{4x^2 + 4x - 3}} \, dx \] ### Step 5: Solve the first integral Let \(t = 4x^2 + 4x - 3\), then \(dt = (8x + 4) \, dx\). The first integral becomes: \[ \frac{1}{8} \int \frac{dt}{\sqrt{t}} = \frac{1}{8} \cdot 2\sqrt{t} + C_1 = \frac{1}{4} \sqrt{4x^2 + 4x - 3} + C_1 \] ### Step 6: Solve the second integral Now for the second integral: \[ \frac{5}{2} \int \frac{1}{\sqrt{4x^2 + 4x - 3}} \, dx \] We can factor out a 4 from the square root: \[ = \frac{5}{2} \int \frac{1}{2\sqrt{x^2 + x - \frac{3}{4}}} \, dx = \frac{5}{4} \int \frac{1}{\sqrt{x^2 + x - \frac{3}{4}}} \, dx \] To solve this integral, we complete the square: \[ x^2 + x - \frac{3}{4} = \left(x + \frac{1}{2}\right)^2 - 1 \] Thus, we have: \[ = \frac{5}{4} \int \frac{1}{\sqrt{\left(x + \frac{1}{2}\right)^2 - 1}} \, dx \] Using the formula \(\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln |x + \sqrt{x^2 - a^2}| + C\), we get: \[ = \frac{5}{4} \ln \left| x + \frac{1}{2} + \sqrt{\left(x + \frac{1}{2}\right)^2 - 1} \right| + C_2 \] ### Step 7: Combine results Combining both parts, we have: \[ I = \frac{1}{4} \sqrt{4x^2 + 4x - 3} + \frac{5}{4} \ln \left| 2x + 1 + \sqrt{4x^2 + 4x - 3} \right| + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{x + 3}{\sqrt{4x^2 + 4x - 3}} \, dx = \frac{1}{4} \sqrt{4x^2 + 4x - 3} + \frac{5}{4} \ln \left| 2x + 1 + \sqrt{4x^2 + 4x - 3} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( NUMERICAL ANSWER TYPE QUESTION )|15 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS.AIEEE/JEE MAIN PAPERS|35 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 (SINGLE CORRECT ANSWER TYPE QUESTION ))|35 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

f(x)=sqrt(4x-x^(2)-3)

Let f(x) be a function satisfying f'(x) = f(x) and f(0) = 2. Then int(f(x))/(3+4f(x))dx is equal to

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

If g(x)=(f(x)-f(-x))/2 defined over [-3,3] f(x)=2x^(2)-4x+1 , then int_(-3)^(3)g(x)dx is equal to

If f((3x-4)/(3x+4))=x+2 , then int f(x)dx is equal to

If f(x) is defined on [-2,2] by f(x)=4x^(2)-3x+1 and g(x)=(f(-x)-f(x))/(x^(2)+3) then int_(-2)^(2)g(x)dx is equal to

int(dx)/((x+1)sqrt(4x+3)) is equal to

If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function for which int_(0)^(2)f(x)dx=5, then int_(0)^(50)f(x)dx is equal to 125 (b) int_(-4)^(46)f(x)dx int_(1)^(51)f(x)dx(d)int_(2)^(52)f(x)dx

MCGROW HILL PUBLICATION-INDEFINITE INTEGRATION-EXERCISE (LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))
  1. Let f be a continuous function satisfying f (x+y) = f (x) + f (y), for...

    Text Solution

    |

  2. The value of int(dx)/(4sqrt((x-1)^(3)(x+2^(2)))) is

    Text Solution

    |

  3. int(cos4x-1)/(cotx-tanx)dx is equal to

    Text Solution

    |

  4. If f(x) = lim(n->oo)(x^n-x^(-n))/(x^n+x^(-n)), x >1 then int(xf(x)l...

    Text Solution

    |

  5. The value of int sin 3sqrt(x) dx is

    Text Solution

    |

  6. Let f(x) be a function satisfying f'(x) = f(x) and f(0) = 2. Then int(...

    Text Solution

    |

  7. If int(f(x))/(x^(2)-x+1)dx=(3)/(2)log(x^(2)-x+1)+(1)/(sqrt(3))tan^(-1)...

    Text Solution

    |

  8. If the antiderivative of (1)/(x^(2)sqrt(1+x^(2))) is -sqrt(f(x))/(x)+C...

    Text Solution

    |

  9. intdx/cos^3xsqrt(sin2x)

    Text Solution

    |

  10. If f(x) = sqrt(x),g(x) = e^(x) - 1 and h(x) = tan^(-1)x then the antid...

    Text Solution

    |

  11. If f(x) = sqrt(4x^(2)+4x-3) then int(x+3)/(f(x))dx is equal

    Text Solution

    |

  12. If f (x) = (1+sqrt(2cosx))/(1-sqrt(2)cosx)andg(x)=tan""(x)/(2)andh(x)=...

    Text Solution

    |

  13. If f(x) = sqrt(x^(2)+4)"then" int(f(x))/(x^(6))dx is equal to

    Text Solution

    |

  14. If f(x) = cos x an g (x) = sin x then inta(logf(x))/((f(x))^(2))dx

    Text Solution

    |

  15. If f (x) = cos x then int(2(f(x))^(2)-1)(4(f(x))^(3)-3 f (x)) dx is eq...

    Text Solution

    |

  16. If In=int cot^n dc and I0+I1+2(I2+.......+I8)+I9+I10=A(u+(u^2)/2+........

    Text Solution

    |

  17. f(x) = int (dx)/(sin^(4)x) is a

    Text Solution

    |

  18. If f(x) = sqrt(x^(2)-a^(2))"then" int(x^(2))/(f(x))dx is

    Text Solution

    |

  19. Let f(x)=x/((1+x^n)^(1/ n)) for ngeq2 and g(x)=(f(ofo ...of)(x) Then ...

    Text Solution

    |

  20. If intf(x)dx=phi(x)i.e.phi is a function such that phi'(x) = f(x), the...

    Text Solution

    |