Home
Class 12
MATHS
The value of I= int(0)^(pi) (xdx)/( 4 co...

The value of `I= int_(0)^(pi) (xdx)/( 4 cos^(2) x +9 sin^(2) x )` is

A

`pi^(2) //12`

B

`pi^(2)//4`

C

`pi^(2) //6`

D

`pi^(2) //3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\pi} \frac{x \, dx}{4 \cos^2 x + 9 \sin^2 x} \), we can use the property of definite integrals. Here is the step-by-step solution: ### Step 1: Use the property of definite integrals We can use the property that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] In our case, \( a = \pi \). Thus, we have: \[ I = \int_0^{\pi} \frac{x \, dx}{4 \cos^2 x + 9 \sin^2 x} = \int_0^{\pi} \frac{\pi - x \, dx}{4 \cos^2(\pi - x) + 9 \sin^2(\pi - x)} \] ### Step 2: Simplify the integral Using the trigonometric identities \( \cos(\pi - x) = -\cos x \) and \( \sin(\pi - x) = \sin x \), we can simplify the denominator: \[ 4 \cos^2(\pi - x) + 9 \sin^2(\pi - x) = 4 \cos^2 x + 9 \sin^2 x \] Thus, we can rewrite the integral as: \[ I = \int_0^{\pi} \frac{\pi - x \, dx}{4 \cos^2 x + 9 \sin^2 x} \] ### Step 3: Add the two integrals Now we have two expressions for \( I \): 1. \( I = \int_0^{\pi} \frac{x \, dx}{4 \cos^2 x + 9 \sin^2 x} \) 2. \( I = \int_0^{\pi} \frac{\pi - x \, dx}{4 \cos^2 x + 9 \sin^2 x} \) Adding these two equations gives: \[ 2I = \int_0^{\pi} \frac{x + (\pi - x) \, dx}{4 \cos^2 x + 9 \sin^2 x} = \int_0^{\pi} \frac{\pi \, dx}{4 \cos^2 x + 9 \sin^2 x} \] ### Step 4: Solve for \( I \) Now we can express \( I \): \[ 2I = \pi \int_0^{\pi} \frac{dx}{4 \cos^2 x + 9 \sin^2 x} \] Thus, \[ I = \frac{\pi}{2} \int_0^{\pi} \frac{dx}{4 \cos^2 x + 9 \sin^2 x} \] ### Step 5: Change of variable To evaluate the integral \( \int_0^{\pi} \frac{dx}{4 \cos^2 x + 9 \sin^2 x} \), we can use the substitution \( t = \tan x \), which implies \( dx = \frac{dt}{1 + t^2} \) and changes the limits from \( x = 0 \) to \( x = \pi \) to \( t = 0 \) to \( t = \infty \). ### Step 6: Substitute and simplify The integral becomes: \[ \int_0^{\infty} \frac{1}{4 \cdot \frac{1}{1+t^2} + 9 \cdot \frac{t^2}{1+t^2}} \cdot \frac{dt}{1+t^2} = \int_0^{\infty} \frac{dt}{\frac{4 + 9t^2}{1+t^2}} \cdot \frac{1}{1+t^2} \] This simplifies to: \[ \int_0^{\infty} \frac{1+t^2}{4 + 9t^2} \, dt \] ### Step 7: Evaluate the integral Using the formula for the integral \( \int_0^{\infty} \frac{dt}{a^2 + t^2} = \frac{\pi}{2a} \), we can evaluate: \[ \int_0^{\infty} \frac{dt}{4 + 9t^2} = \frac{\pi}{2 \cdot 3} = \frac{\pi}{6} \] ### Step 8: Final calculation Substituting back, we have: \[ I = \frac{\pi}{2} \cdot \frac{\pi}{6} = \frac{\pi^2}{12} \] Thus, the value of \( I \) is: \[ \boxed{\frac{\pi^2}{12}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions|33 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|16 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Concept-based) Single Correct Answer Type Questions|10 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)(xdx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)

int_(0)^(pi) sin^(4) x cos^(2)xdx =

int_(0)^( pi/2)(xdx)/(sin x+cos x)

The value of int_(0)^( pi)sin^(50)x cos^(49)xdx is

int_(0)^( pi)x sin x cos^(2)xdx

Evaluate int_(0)^( pi)(sin xdx)/(4-sin^(2)x)=

Evaluate: int_(0)^( pi)(xdx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)

int_(0)^(2 pi)sin^(3)x cos^(2)xdx

Evaluate int_(0)^( pi)(xdx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)

The value of int_(0)^( pi)e^(sin^(2)x)cos(2n+1)xdx=

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-SOLVED EXAMPLES (LEVEL 1 ) Single Correct Answer Type Questions
  1. int(0)^( pi/2)(dx)/(1+cot x)

    Text Solution

    |

  2. The value of I= int(0)^(pi) (xdx)/( 4 cos^(2) x +9 sin^(2) x ) is

    Text Solution

    |

  3. If overset(x)underset(e )int t f(t)dt=sin x-x cos x-(x^(2))/(2) for al...

    Text Solution

    |

  4. The value of int(0)^(2) x^([x^(2) +1]) dx, where [x] is the greatest i...

    Text Solution

    |

  5. Let f(x)=int1^xsqrt(2-t^2)dtdot Then the real roots of the equation , ...

    Text Solution

    |

  6. The integral int[-1/2]^[1/2]([x]+log([1+x]/[1-x])).dx equals

    Text Solution

    |

  7. The value I= int(-1)^(1) ( cos^(-1) x + (x^(7) -3x^(5) + 7x^(3) -x) /(...

    Text Solution

    |

  8. The value of I=int(-pi//2)^(pi//2) sqrt( cos x - cos^(3) x)" "dxis

    Text Solution

    |

  9. If n in N, the value of int(0)^(n) [x] dx (where [x] is the greatest i...

    Text Solution

    |

  10. If F(x) =int(3)^(x) (2 + (d)/( dt) cos t) dt then F'(pi/6) is equal to

    Text Solution

    |

  11. The value of underset(nrarrinfty)(lim)(1)/(n).sum(r=1)^(2n)(r)/(sqrt(n...

    Text Solution

    |

  12. The value of the integral int(0)^(n pi +1) (| cosx|+|sin x|) dx is

    Text Solution

    |

  13. Ifg(x)= int(0)^(x) cos 4t dt, "then " g (x+pi) equals

    Text Solution

    |

  14. The value of int(0)^(pi//2)(dx)/(1+tan^(3)x) is

    Text Solution

    |

  15. The value of int(0)^(4) 3^(sqrt(2x+1) )dx is

    Text Solution

    |

  16. int0^1x(1-x)^(99)dx=

    Text Solution

    |

  17. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  18. Let f : R -> R and g : R -> R be continuous functions. Then the value...

    Text Solution

    |

  19. If f(x) = (1+ tanx) (1+ tan (pi//4 - x)) and g(x) is a function with d...

    Text Solution

    |

  20. Find lim(n->oo) Sn ; if Sn=1/(2n)+1/(sqrt(4n^2-1))+1/(sqrt(4n^2-...

    Text Solution

    |