Home
Class 12
MATHS
The value of int(0)^(2) x^([x^(2) +1]) d...

The value of `int_(0)^(2) x^([x^(2) +1]) dx`, where `[x]` is the greatest integer less than or equal to `x` is

A

`2`

B

`8//3`

C

`4`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2} x^{[\sqrt{x^2 + 1}]} \, dx \), where \([\cdot]\) denotes the greatest integer function, we need to analyze the function \( \sqrt{x^2 + 1} \) to determine the intervals where the greatest integer value changes. ### Step-by-Step Solution 1. **Identify the Function**: We start with the function \( \sqrt{x^2 + 1} \). We will evaluate this function at key points to determine the intervals for the greatest integer function. 2. **Evaluate the Function at Key Points**: - At \( x = 0 \): \[ \sqrt{0^2 + 1} = \sqrt{1} = 1 \quad \Rightarrow \quad [\sqrt{0^2 + 1}] = 1 \] - At \( x = 1 \): \[ \sqrt{1^2 + 1} = \sqrt{2} \approx 1.414 \quad \Rightarrow \quad [\sqrt{1^2 + 1}] = 1 \] - At \( x = \sqrt{2} \): \[ \sqrt{(\sqrt{2})^2 + 1} = \sqrt{2 + 1} = \sqrt{3} \approx 1.732 \quad \Rightarrow \quad [\sqrt{(\sqrt{2})^2 + 1}] = 1 \] - At \( x = \sqrt{3} \): \[ \sqrt{(\sqrt{3})^2 + 1} = \sqrt{3 + 1} = 2 \quad \Rightarrow \quad [\sqrt{(\sqrt{3})^2 + 1}] = 2 \] - At \( x = 2 \): \[ \sqrt{2^2 + 1} = \sqrt{4 + 1} = \sqrt{5} \approx 2.236 \quad \Rightarrow \quad [\sqrt{2^2 + 1}] = 2 \] 3. **Determine the Intervals**: From the evaluations: - For \( x \in [0, \sqrt{3}) \), \( [\sqrt{x^2 + 1}] = 1 \) - For \( x \in [\sqrt{3}, 2] \), \( [\sqrt{x^2 + 1}] = 2 \) 4. **Break the Integral**: We can now break the integral into two parts: \[ I = \int_{0}^{\sqrt{3}} x^{1} \, dx + \int_{\sqrt{3}}^{2} x^{2} \, dx \] 5. **Calculate Each Integral**: - First Integral: \[ \int_{0}^{\sqrt{3}} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{\sqrt{3}} = \frac{(\sqrt{3})^2}{2} - 0 = \frac{3}{2} \] - Second Integral: \[ \int_{\sqrt{3}}^{2} x^{2} \, dx = \left[ \frac{x^3}{3} \right]_{\sqrt{3}}^{2} = \frac{2^3}{3} - \frac{(\sqrt{3})^3}{3} = \frac{8}{3} - \frac{3\sqrt{3}}{3} = \frac{8 - 3\sqrt{3}}{3} \] 6. **Combine Results**: Now, combine the results of both integrals: \[ I = \frac{3}{2} + \frac{8 - 3\sqrt{3}}{3} \] 7. **Find a Common Denominator**: The common denominator for \( \frac{3}{2} \) and \( \frac{8 - 3\sqrt{3}}{3} \) is 6: \[ I = \frac{3 \times 3}{6} + \frac{2(8 - 3\sqrt{3})}{6} = \frac{9 + 16 - 6\sqrt{3}}{6} = \frac{25 - 6\sqrt{3}}{6} \] ### Final Result: Thus, the value of the integral is: \[ I = \frac{25 - 6\sqrt{3}}{6} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions|33 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|16 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Concept-based) Single Correct Answer Type Questions|10 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(15/2)[x-1]dx= where [x] denotes the greatest integer less than or equal to x

The value of int_(-1)^(2)|[x]-{x}dx, where [x] isthe greatest integer less then or equal to x and {x} is theTrectional part of a is

If f(x)=|x-1|-[x] , where [x] is the greatest integer less than or equal to x, then

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_-1^1 (sin^2x)/([x/sqrt(2)]+1/2)dx , where [x] =greatest integer less than or equal to x , is (A) 1 (B) 0 (C) 4-sin4 (D) none of these

if f(x)=(sin(4 pi[x]))/(1+[x]^(2)), where [x] is the greatest integer less than or equal to x ,

The value of the integral, int_1^3 [x^2-2x–2]dx , where [x] denotes the greatest integer less than or equal to x, is :

The value of int_(0)^(2)[x^(2)-x+1]dx (where,[*] denotes the greatest integer function) is equal to

Consider the integral I=int_(0)^(10)([x]e^([x]))/(e^(x-1))dx , where [x] denotes the greatest integer less than or equal to x. Then the value of I is equal to :

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-SOLVED EXAMPLES (LEVEL 1 ) Single Correct Answer Type Questions
  1. The value of I= int(0)^(pi) (xdx)/( 4 cos^(2) x +9 sin^(2) x ) is

    Text Solution

    |

  2. If overset(x)underset(e )int t f(t)dt=sin x-x cos x-(x^(2))/(2) for al...

    Text Solution

    |

  3. The value of int(0)^(2) x^([x^(2) +1]) dx, where [x] is the greatest i...

    Text Solution

    |

  4. Let f(x)=int1^xsqrt(2-t^2)dtdot Then the real roots of the equation , ...

    Text Solution

    |

  5. The integral int[-1/2]^[1/2]([x]+log([1+x]/[1-x])).dx equals

    Text Solution

    |

  6. The value I= int(-1)^(1) ( cos^(-1) x + (x^(7) -3x^(5) + 7x^(3) -x) /(...

    Text Solution

    |

  7. The value of I=int(-pi//2)^(pi//2) sqrt( cos x - cos^(3) x)" "dxis

    Text Solution

    |

  8. If n in N, the value of int(0)^(n) [x] dx (where [x] is the greatest i...

    Text Solution

    |

  9. If F(x) =int(3)^(x) (2 + (d)/( dt) cos t) dt then F'(pi/6) is equal to

    Text Solution

    |

  10. The value of underset(nrarrinfty)(lim)(1)/(n).sum(r=1)^(2n)(r)/(sqrt(n...

    Text Solution

    |

  11. The value of the integral int(0)^(n pi +1) (| cosx|+|sin x|) dx is

    Text Solution

    |

  12. Ifg(x)= int(0)^(x) cos 4t dt, "then " g (x+pi) equals

    Text Solution

    |

  13. The value of int(0)^(pi//2)(dx)/(1+tan^(3)x) is

    Text Solution

    |

  14. The value of int(0)^(4) 3^(sqrt(2x+1) )dx is

    Text Solution

    |

  15. int0^1x(1-x)^(99)dx=

    Text Solution

    |

  16. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  17. Let f : R -> R and g : R -> R be continuous functions. Then the value...

    Text Solution

    |

  18. If f(x) = (1+ tanx) (1+ tan (pi//4 - x)) and g(x) is a function with d...

    Text Solution

    |

  19. Find lim(n->oo) Sn ; if Sn=1/(2n)+1/(sqrt(4n^2-1))+1/(sqrt(4n^2-...

    Text Solution

    |

  20. Evaluate: int(-pi)^(3pi)log(s e ctheta-t a ntheta)dtheta

    Text Solution

    |