Home
Class 12
MATHS
If n in N, the value of int(0)^(n) [x] d...

If `n in N`, the value of `int_(0)^(n) [x] dx` (where [x] is the greatest integer function) is

A

`(n(n+1))/(2)`

B

`(n(n-1))/(2)`

C

`n(n-1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{n} [x] \, dx \), where \([x]\) is the greatest integer function (also known as the floor function), we can break the integral into segments based on the behavior of the greatest integer function. ### Step-by-Step Solution: 1. **Understanding the Greatest Integer Function**: The function \([x]\) takes the value of the greatest integer less than or equal to \(x\). Therefore, within the interval \([0, n)\), the function \([x]\) will take the values: - \([x] = 0\) for \(0 \leq x < 1\) - \([x] = 1\) for \(1 \leq x < 2\) - \([x] = 2\) for \(2 \leq x < 3\) - ... - \([x] = n-1\) for \(n-1 \leq x < n\) 2. **Breaking the Integral**: We can break the integral from \(0\) to \(n\) into separate integrals for each interval: \[ \int_{0}^{n} [x] \, dx = \int_{0}^{1} 0 \, dx + \int_{1}^{2} 1 \, dx + \int_{2}^{3} 2 \, dx + \ldots + \int_{n-1}^{n} (n-1) \, dx \] 3. **Calculating Each Integral**: - The first integral: \[ \int_{0}^{1} 0 \, dx = 0 \] - The second integral: \[ \int_{1}^{2} 1 \, dx = 1 \cdot (2 - 1) = 1 \] - The third integral: \[ \int_{2}^{3} 2 \, dx = 2 \cdot (3 - 2) = 2 \] - Continuing this pattern, we find: \[ \int_{k}^{k+1} k \, dx = k \cdot (k+1 - k) = k \quad \text{for } k = 1, 2, \ldots, n-1 \] 4. **Summing the Integrals**: The total integral can now be expressed as: \[ \int_{0}^{n} [x] \, dx = 0 + 1 + 2 + \ldots + (n-1) \] This is the sum of the first \(n-1\) natural numbers. 5. **Using the Formula for the Sum of Natural Numbers**: The sum of the first \(m\) natural numbers is given by: \[ S = \frac{m(m + 1)}{2} \] For \(m = n-1\), we have: \[ S = \frac{(n-1)n}{2} \] 6. **Final Result**: Therefore, the value of the integral is: \[ \int_{0}^{n} [x] \, dx = \frac{(n-1)n}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions|33 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|16 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Concept-based) Single Correct Answer Type Questions|10 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of int_(0)^(sqrt(2)) [ x^(2)] dx where [*] is the greatest integer function

The value of int_(0)^(9)[sqrt(x)+2]dx, where [.] is the greatest integer function.

int_(0)^(4)x [x] dx= ( where [.] denotes greatest integer function

The value of int_(-1)^(1)(x-[x])dx , (where [.] denotes greatest integer function)is

int_(0) ^(3) [x] dx= __________ where [x] is greatest integer function

int_(0)^(x) dx = "……." , where [x] is greatest integer function.

int_(0)^(3)[x]dx= . . . ., where [x] is greatest integer funcction.

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-SOLVED EXAMPLES (LEVEL 1 ) Single Correct Answer Type Questions
  1. The value I= int(-1)^(1) ( cos^(-1) x + (x^(7) -3x^(5) + 7x^(3) -x) /(...

    Text Solution

    |

  2. The value of I=int(-pi//2)^(pi//2) sqrt( cos x - cos^(3) x)" "dxis

    Text Solution

    |

  3. If n in N, the value of int(0)^(n) [x] dx (where [x] is the greatest i...

    Text Solution

    |

  4. If F(x) =int(3)^(x) (2 + (d)/( dt) cos t) dt then F'(pi/6) is equal to

    Text Solution

    |

  5. The value of underset(nrarrinfty)(lim)(1)/(n).sum(r=1)^(2n)(r)/(sqrt(n...

    Text Solution

    |

  6. The value of the integral int(0)^(n pi +1) (| cosx|+|sin x|) dx is

    Text Solution

    |

  7. Ifg(x)= int(0)^(x) cos 4t dt, "then " g (x+pi) equals

    Text Solution

    |

  8. The value of int(0)^(pi//2)(dx)/(1+tan^(3)x) is

    Text Solution

    |

  9. The value of int(0)^(4) 3^(sqrt(2x+1) )dx is

    Text Solution

    |

  10. int0^1x(1-x)^(99)dx=

    Text Solution

    |

  11. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  12. Let f : R -> R and g : R -> R be continuous functions. Then the value...

    Text Solution

    |

  13. If f(x) = (1+ tanx) (1+ tan (pi//4 - x)) and g(x) is a function with d...

    Text Solution

    |

  14. Find lim(n-&gt;oo) Sn ; if Sn=1/(2n)+1/(sqrt(4n^2-1))+1/(sqrt(4n^2-...

    Text Solution

    |

  15. Evaluate: int(-pi)^(3pi)log(s e ctheta-t a ntheta)dtheta

    Text Solution

    |

  16. The value of int(0)^(oo) (dx)/((x^(2)+4)(x^(2)+9) ) is

    Text Solution

    |

  17. Evaluate int-1 3/2|xsin(pix)|dx

    Text Solution

    |

  18. If f(0)=2, f'(x) =f(x), phi (x) = x+f(x) then int(0)^(1) f(x) phi (x) ...

    Text Solution

    |

  19. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  20. If f(x) =int(1//x^(2) ) ^(x^2) cos sqrt(t) dt, then f'(1) is equal to

    Text Solution

    |