Home
Class 12
MATHS
The value of int(0)^(4) 3^(sqrt(2x+1) )d...

The value of `int_(0)^(4) 3^(sqrt(2x+1) )dx` is

A

`(6)/(log 3) (13- (4)/(log 3) )`

B

`(66)/(log 3)`

C

`(6)/(log 3) (13- (5)/(log 3) )`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{4} 3^{\sqrt{2x+1}} \, dx \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{4} 3^{\sqrt{2x+1}} \, dx \] ### Step 2: Use substitution Let \( u = \sqrt{2x + 1} \). Then, we differentiate \( u \): \[ u^2 = 2x + 1 \implies 2x = u^2 - 1 \implies x = \frac{u^2 - 1}{2} \] Now, we find \( dx \): \[ dx = \frac{d}{du}\left(\frac{u^2 - 1}{2}\right) du = u \, du \] ### Step 3: Change the limits of integration When \( x = 0 \): \[ u = \sqrt{2(0) + 1} = \sqrt{1} = 1 \] When \( x = 4 \): \[ u = \sqrt{2(4) + 1} = \sqrt{9} = 3 \] Thus, the limits change from \( x = 0 \) to \( x = 4 \) into \( u = 1 \) to \( u = 3 \). ### Step 4: Rewrite the integral Substituting \( u \) and \( dx \) into the integral gives: \[ I = \int_{1}^{3} 3^{u} \cdot u \, du \] ### Step 5: Integrate by parts Let \( v = 3^u \) and \( dv = 3^u \ln(3) \, du \). We can use integration by parts: \[ \int u \cdot 3^u \, du = u \cdot \frac{3^u}{\ln(3)} - \int \frac{3^u}{\ln(3)} \, du \] \[ = u \cdot \frac{3^u}{\ln(3)} - \frac{3^u}{(\ln(3))^2} \] ### Step 6: Evaluate the integral Now we evaluate from \( u = 1 \) to \( u = 3 \): \[ I = \left[ u \cdot \frac{3^u}{\ln(3)} - \frac{3^u}{(\ln(3))^2} \right]_{1}^{3} \] Calculating the upper limit \( u = 3 \): \[ = 3 \cdot \frac{3^3}{\ln(3)} - \frac{3^3}{(\ln(3))^2} = 3 \cdot \frac{27}{\ln(3)} - \frac{27}{(\ln(3))^2} \] Calculating the lower limit \( u = 1 \): \[ = 1 \cdot \frac{3^1}{\ln(3)} - \frac{3^1}{(\ln(3))^2} = \frac{3}{\ln(3)} - \frac{3}{(\ln(3))^2} \] ### Step 7: Combine the results Now, substituting back into the expression for \( I \): \[ I = \left( \frac{81}{\ln(3)} - \frac{27}{(\ln(3))^2} \right) - \left( \frac{3}{\ln(3)} - \frac{3}{(\ln(3))^2} \right) \] \[ = \frac{81 - 3}{\ln(3)} - \frac{27 - 3}{(\ln(3))^2} \] \[ = \frac{78}{\ln(3)} - \frac{24}{(\ln(3))^2} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{78}{\ln(3)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions|33 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|16 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Concept-based) Single Correct Answer Type Questions|10 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1) sqrt((1-x)/(1+x))dx is

The value of int_(0)^(a) sqrt((a-x)/x ) dx is

The value of int_(0)^(pi/4) sqrt(tanx) dx+int_(0)^(pi/4) sqrt(cotx) dx is equal to

The value of int_(0)^(4)|x-1|dx is

The value of int _(0)^(2) (3^sqrt(x))/(sqrt(x)) dx is

The value of (int_(0)^(2)x^(4)sqrt(4-x^(2))dx)/(int_(0)^(2)x^(2)sqrt(4-x^(2)dx) is equal to

If the value of the integral int_(1)^(2)e^(x^(2))dx is alpha, then the value of int_(e)^(e^(4))sqrt(ln x)dx is:

Evaluate :int_(0)^(1)(1)/(sqrt(2x+3))dx

int_(0)^(1)(1)/(sqrt(3x+2))dx

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-SOLVED EXAMPLES (LEVEL 1 ) Single Correct Answer Type Questions
  1. Ifg(x)= int(0)^(x) cos 4t dt, "then " g (x+pi) equals

    Text Solution

    |

  2. The value of int(0)^(pi//2)(dx)/(1+tan^(3)x) is

    Text Solution

    |

  3. The value of int(0)^(4) 3^(sqrt(2x+1) )dx is

    Text Solution

    |

  4. int0^1x(1-x)^(99)dx=

    Text Solution

    |

  5. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  6. Let f : R -> R and g : R -> R be continuous functions. Then the value...

    Text Solution

    |

  7. If f(x) = (1+ tanx) (1+ tan (pi//4 - x)) and g(x) is a function with d...

    Text Solution

    |

  8. Find lim(n->oo) Sn ; if Sn=1/(2n)+1/(sqrt(4n^2-1))+1/(sqrt(4n^2-...

    Text Solution

    |

  9. Evaluate: int(-pi)^(3pi)log(s e ctheta-t a ntheta)dtheta

    Text Solution

    |

  10. The value of int(0)^(oo) (dx)/((x^(2)+4)(x^(2)+9) ) is

    Text Solution

    |

  11. Evaluate int-1 3/2|xsin(pix)|dx

    Text Solution

    |

  12. If f(0)=2, f'(x) =f(x), phi (x) = x+f(x) then int(0)^(1) f(x) phi (x) ...

    Text Solution

    |

  13. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  14. If f(x) =int(1//x^(2) ) ^(x^2) cos sqrt(t) dt, then f'(1) is equal to

    Text Solution

    |

  15. The least value of the function phi(x)=overset(x)underset(5pi//4)int...

    Text Solution

    |

  16. Evaluate int0^a(log(1+a x)/(1+x^2)dx)

    Text Solution

    |

  17. If I(m,n)= overset(1)underset(0)int x^(m) (ln x)^(n)dx then I(m,n) i...

    Text Solution

    |

  18. If I(n) = int(0)^(1) ( cos^(-1) x)^(n) dx then I(6)- 360 I(2) is given...

    Text Solution

    |

  19. If I(n)=underset(0)overset(pi//2)int x^(n) sin x dx, then I(4)+12I(2) ...

    Text Solution

    |

  20. If a function f: [ 0, 27] to R is differentiable then for some 0 lt al...

    Text Solution

    |