Home
Class 12
MATHS
Find lim(n->oo) Sn ; if Sn=1/(2n)+...

Find `lim_(n->oo) S_n` ; if `S_n=1/(2n)+1/(sqrt(4n^2-1))+1/(sqrt(4n^2-4))+......+1/(sqrt(3n^2+2n-1))`.

A

`pi//2`

B

`2`

C

`1`

D

`pi//6`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions|33 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|16 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Concept-based) Single Correct Answer Type Questions|10 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

Find lim_(n rarr oo)S_(n); if S_(n)=(1)/(2n)+(1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-4))+......+(1)/(sqrt(3n^(2)+2n-1))

If quad S_(n)=(1)/(2n)+(1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-4))+...+(1)/(sqrt(3n_(2)^(2)+2n-1)),n in N then lim_(n rarr oo)S_(n) is equal to (pi)/(2)(b)2(c)1(d)(pi)/(6),n in N

lim_(n rarr oo)(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2) +2))+...(.1)/(sqrt(n^(2)+2n))=

Evaluate: lim_(n rarr oo)((1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-2^(2)))+...+(1)/(sqrt(3n^(2))))

The value of lim_(nto oo)(1/(sqrt(n^(2)))+1/(sqrt(n^(2)+1))+…..+1/(sqrt(n^(2)+2n))) is

li sum_ (n-> oo) sum_ (r = 1) ^ (n) (1) / (sqrt (4n ^ (2) -r ^ (2)))

The value of lim_(n rarr oo)(1/sqrt(4n^(2)-1)+1/sqrt(4n^(2)-4)+...+1/sqrt(4n^(2)-n^(2))) is -

lim_(nto oo)1/n+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+...(1)/(sqrt(n^(2)+(n-1)n)) is equal to

lim_(nrarroo)((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+....+(1)/(sqrt(n^(2)-(n-1)^(2)))) is equal to

lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-SOLVED EXAMPLES (LEVEL 1 ) Single Correct Answer Type Questions
  1. Let f : R -> R and g : R -> R be continuous functions. Then the value...

    Text Solution

    |

  2. If f(x) = (1+ tanx) (1+ tan (pi//4 - x)) and g(x) is a function with d...

    Text Solution

    |

  3. Find lim(n->oo) Sn ; if Sn=1/(2n)+1/(sqrt(4n^2-1))+1/(sqrt(4n^2-...

    Text Solution

    |

  4. Evaluate: int(-pi)^(3pi)log(s e ctheta-t a ntheta)dtheta

    Text Solution

    |

  5. The value of int(0)^(oo) (dx)/((x^(2)+4)(x^(2)+9) ) is

    Text Solution

    |

  6. Evaluate int-1 3/2|xsin(pix)|dx

    Text Solution

    |

  7. If f(0)=2, f'(x) =f(x), phi (x) = x+f(x) then int(0)^(1) f(x) phi (x) ...

    Text Solution

    |

  8. Evaluate: ("lim")(xvec2)(int0"x"cost^2dt)/x

    Text Solution

    |

  9. If f(x) =int(1//x^(2) ) ^(x^2) cos sqrt(t) dt, then f'(1) is equal to

    Text Solution

    |

  10. The least value of the function phi(x)=overset(x)underset(5pi//4)int...

    Text Solution

    |

  11. Evaluate int0^a(log(1+a x)/(1+x^2)dx)

    Text Solution

    |

  12. If I(m,n)= overset(1)underset(0)int x^(m) (ln x)^(n)dx then I(m,n) i...

    Text Solution

    |

  13. If I(n) = int(0)^(1) ( cos^(-1) x)^(n) dx then I(6)- 360 I(2) is given...

    Text Solution

    |

  14. If I(n)=underset(0)overset(pi//2)int x^(n) sin x dx, then I(4)+12I(2) ...

    Text Solution

    |

  15. If a function f: [ 0, 27] to R is differentiable then for some 0 lt al...

    Text Solution

    |

  16. The difference between the greatest and least values of f(x)= int0^x (...

    Text Solution

    |

  17. The value of the integral overset(pi//4)underset(0)int (sinx+cosx)/(3+...

    Text Solution

    |

  18. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |

  19. The value of the integral int(0)^(pi//2)(dx)/(1+(1)/(6)sin^(2)x) is

    Text Solution

    |

  20. int(e^(- 1))^(e^2)|(lnx)/x|dx

    Text Solution

    |