Home
Class 12
MATHS
Let f be an odd function then int(-1)^(1...

Let `f` be an odd function then `int_(-1)^(1) (|x| +f(x) cos x) dx` is equal to

A

`0`

B

`1`

C

`2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{1} (|x| + f(x) \cos x) \, dx \) where \( f \) is an odd function, we can break it down into two parts: the integral of \( |x| \) and the integral of \( f(x) \cos x \). ### Step-by-step Solution: 1. **Understanding the properties of the functions:** - Since \( f(x) \) is an odd function, it satisfies the property \( f(-x) = -f(x) \). - The cosine function, \( \cos x \), is an even function, meaning \( \cos(-x) = \cos(x) \). - The product of an odd function and an even function is an odd function. Therefore, \( f(x) \cos x \) is odd. 2. **Splitting the integral:** \[ \int_{-1}^{1} (|x| + f(x) \cos x) \, dx = \int_{-1}^{1} |x| \, dx + \int_{-1}^{1} f(x) \cos x \, dx \] 3. **Evaluating the integral of \( f(x) \cos x \):** - Since \( f(x) \cos x \) is an odd function, the integral over a symmetric interval around zero is zero: \[ \int_{-1}^{1} f(x) \cos x \, dx = 0 \] 4. **Evaluating the integral of \( |x| \):** - The function \( |x| \) can be split into two parts: \[ |x| = \begin{cases} -x & \text{for } x < 0 \\ x & \text{for } x \geq 0 \end{cases} \] - Thus, we can write: \[ \int_{-1}^{1} |x| \, dx = \int_{-1}^{0} -x \, dx + \int_{0}^{1} x \, dx \] 5. **Calculating the integrals:** - For the first integral: \[ \int_{-1}^{0} -x \, dx = \left[-\frac{x^2}{2}\right]_{-1}^{0} = \left[0 - \frac{(-1)^2}{2}\right] = -\frac{1}{2} \] - For the second integral: \[ \int_{0}^{1} x \, dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \left[\frac{1^2}{2} - 0\right] = \frac{1}{2} \] 6. **Combining the results:** \[ \int_{-1}^{1} |x| \, dx = -\frac{1}{2} + \frac{1}{2} = 1 \] 7. **Final result:** \[ \int_{-1}^{1} (|x| + f(x) \cos x) \, dx = 1 + 0 = 1 \] ### Conclusion: The value of the integral \( \int_{-1}^{1} (|x| + f(x) \cos x) \, dx \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions|33 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|16 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Concept-based) Single Correct Answer Type Questions|10 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

If f(x) is an even function, then what is int_(0)^(pi) f(cos x) dx equal to ?

Let f(x) = {x} , the fractional part of x then int_(-1)^(1) f(x) dx is equal to

Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x]-1| , when [x] is even ,where [.] denotes the greatest integer function , then int_-2^4 f(x) dx is equal to

If f (x) = cos x then int(2(f(x))^(2)-1)(4(f(x))^(3)-3 f (x)) dx is equal to

Let f:R rarr[0,oo) be a differentiable function so that f'(x) is continuous function then int((f(x)-f'(x))e^(x))/((e^(x)+f(x))^(2))dx is equal to

Let f : R to R is a function defined as f(x) where = {(|x-[x]| ,:[x] "is odd"),(|x - [x + 1]| ,:[x] "is even"):} [.] denotes the greatest integer function, then int_(-2)^(4) dx is equal to

Let f(x)=minimum{|x|,1-|x|,(1)/(4)} for x varepsilon R then the value of int_(-1)^(1)f(x)dx is equal to

If f is an odd function and I=int_(-a)^(a)(f(sin x))/(f(cos x)+f (sin^(2)x))dx , then

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-SOLVED EXAMPLES (LEVEL 1 ) Single Correct Answer Type Questions
  1. The value of the integral overset(100pi)underset(0)int sqrt(1-cos2x)" ...

    Text Solution

    |

  2. The value of inta^b(|x|)/x\ dx , altb is

    Text Solution

    |

  3. Let f be an odd function then int(-1)^(1) (|x| +f(x) cos x) dx is equa...

    Text Solution

    |

  4. Let f be a periodic continuous function with period T gt 0. If I= int(...

    Text Solution

    |

  5. Let f(x) = int(0)^(x) sqrt(6-mu^(2) ) du. Then the real roots of the e...

    Text Solution

    |

  6. If f(x)= int(x^2)^(x^(2) +4) e^(-t^(2) ) dt, then the function f(x) in...

    Text Solution

    |

  7. If int(sinx)^1 t^2f(t)dt=1-sinx, then the value of f(1/sqrt(3)) is (A)...

    Text Solution

    |

  8. The integral I= int(-3//2)^(3//2) ([x] + x^(3) + log(a) (x + sqrt(x^(2...

    Text Solution

    |

  9. The value of int(0)^(pi//4) log (1+ tan theta ) d theta is equal to

    Text Solution

    |

  10. int(a)^(b) sqrt((x-a)(b-x)) dx, (b gt a) is equal to

    Text Solution

    |

  11. underset(n to oo)lim((1)/(n)+(1)/(n+1)+...+(1)/(3n)) is equal to

    Text Solution

    |

  12. Let I=overset(1)underset(0)int (sin x)/(sqrt(x))dx andI=overset(1)unde...

    Text Solution

    |

  13. int(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, ...

    Text Solution

    |

  14. Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all x ...

    Text Solution

    |

  15. The value of int(8 log(1+x))/(1+x^(2)) dx is

    Text Solution

    |

  16. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |

  17. Let [.]denote the greatest integer function, then the value of overse...

    Text Solution

    |

  18. Ifg(x)= int(0)^(x) cos 4t dt, "then " g (x+pi) equals

    Text Solution

    |

  19. Let f:[-1,2]vec[0,oo) be a continuous function such that f(x)=f(1-x)fo...

    Text Solution

    |

  20. T h ev a l u eofint(sqrt(1n2))^(sqrt(1n3))(xsinx^2)/(sinx^2+sin(1n6-x^...

    Text Solution

    |