Home
Class 12
MATHS
If f(x)= int(x^2)^(x^(2) +4) e^(-t^(2) )...

If `f(x)= int_(x^2)^(x^(2) +4) e^(-t^(2) ) dt`, then the function `f(x)` increases in

A

`(-oo,0)`

B

`(0,oo)`

C

`(-1,2)`

D

`(-2,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the interval in which the function \( f(x) = \int_{x^2}^{x^2 + 4} e^{-t^2} \, dt \) is increasing, we need to follow these steps: ### Step 1: Differentiate \( f(x) \) Using the Leibniz rule for differentiating integrals, we can differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \int_{x^2}^{x^2 + 4} e^{-t^2} \, dt \right) \] According to the Leibniz rule, we differentiate the upper limit and lower limit: \[ f'(x) = e^{-(x^2 + 4)^2} \cdot \frac{d}{dx}(x^2 + 4) - e^{-x^4} \cdot \frac{d}{dx}(x^2) \] Calculating the derivatives of the limits: - The derivative of the upper limit \( x^2 + 4 \) is \( 2x \). - The derivative of the lower limit \( x^2 \) is \( 2x \). Thus, we have: \[ f'(x) = e^{-(x^2 + 4)^2} \cdot 2x - e^{-x^4} \cdot 2x \] ### Step 2: Factor out common terms We can factor out \( 2x \): \[ f'(x) = 2x \left( e^{-(x^2 + 4)^2} - e^{-x^4} \right) \] ### Step 3: Determine when \( f'(x) > 0 \) For \( f(x) \) to be increasing, we need \( f'(x) > 0 \): \[ 2x \left( e^{-(x^2 + 4)^2} - e^{-x^4} \right) > 0 \] This inequality holds when both factors are positive or both are negative. 1. **Case 1: \( 2x > 0 \)** implies \( x > 0 \). 2. **Case 2: \( e^{-(x^2 + 4)^2} > e^{-x^4} \)** simplifies to: \[ -(x^2 + 4)^2 > -x^4 \quad \Rightarrow \quad (x^2 + 4)^2 < x^4 \] This inequality does not hold for any real \( x \) since \( (x^2 + 4)^2 \) is always greater than \( x^4 \) for all \( x \). ### Step 4: Analyze the critical point The only critical point we found is \( x = 0 \). We can check the sign of \( f'(x) \) around this point: - For \( x < 0 \), \( 2x < 0 \) and \( e^{-(x^2 + 4)^2} - e^{-x^4} \) is positive (since \( e^{-(x^2 + 4)^2} \) is always less than \( e^{-x^4} \)). - For \( x > 0 \), \( 2x > 0 \) and \( e^{-(x^2 + 4)^2} - e^{-x^4} < 0 \). ### Conclusion Thus, \( f'(x) > 0 \) only when \( x < 0 \). Therefore, the function \( f(x) \) is increasing in the interval: \[ (-\infty, 0) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions|33 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|16 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Concept-based) Single Correct Answer Type Questions|10 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt , then find the interval in which f(x) increases.

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt, then f(x) increases in (0,2)(b) no value of x(0,oo)(d)(-oo,0)

If f(x)=int_(x)^(x+1) (e^-(t^2)) dt, then the interval in which f(x) is decreasing is

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(0)^(x)log_(0.5)((2t-8)/(t-2))dt , then the interval in which f(x) is increasing is

if f(x) = int_(0)^(x) (t^2+2t+2) dt where x in [2,4] then

Let f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1lexle4 . Then the range of f (x) is

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-SOLVED EXAMPLES (LEVEL 1 ) Single Correct Answer Type Questions
  1. Let f be an odd function then int(-1)^(1) (|x| +f(x) cos x) dx is equa...

    Text Solution

    |

  2. Let f be a periodic continuous function with period T gt 0. If I= int(...

    Text Solution

    |

  3. Let f(x) = int(0)^(x) sqrt(6-mu^(2) ) du. Then the real roots of the e...

    Text Solution

    |

  4. If f(x)= int(x^2)^(x^(2) +4) e^(-t^(2) ) dt, then the function f(x) in...

    Text Solution

    |

  5. If int(sinx)^1 t^2f(t)dt=1-sinx, then the value of f(1/sqrt(3)) is (A)...

    Text Solution

    |

  6. The integral I= int(-3//2)^(3//2) ([x] + x^(3) + log(a) (x + sqrt(x^(2...

    Text Solution

    |

  7. The value of int(0)^(pi//4) log (1+ tan theta ) d theta is equal to

    Text Solution

    |

  8. int(a)^(b) sqrt((x-a)(b-x)) dx, (b gt a) is equal to

    Text Solution

    |

  9. underset(n to oo)lim((1)/(n)+(1)/(n+1)+...+(1)/(3n)) is equal to

    Text Solution

    |

  10. Let I=overset(1)underset(0)int (sin x)/(sqrt(x))dx andI=overset(1)unde...

    Text Solution

    |

  11. int(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, ...

    Text Solution

    |

  12. Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all x ...

    Text Solution

    |

  13. The value of int(8 log(1+x))/(1+x^(2)) dx is

    Text Solution

    |

  14. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |

  15. Let [.]denote the greatest integer function, then the value of overse...

    Text Solution

    |

  16. Ifg(x)= int(0)^(x) cos 4t dt, "then " g (x+pi) equals

    Text Solution

    |

  17. Let f:[-1,2]vec[0,oo) be a continuous function such that f(x)=f(1-x)fo...

    Text Solution

    |

  18. T h ev a l u eofint(sqrt(1n2))^(sqrt(1n3))(xsinx^2)/(sinx^2+sin(1n6-x^...

    Text Solution

    |

  19. Let f be a continuous function satisfying int(- pi)^(t^2) (f (x) + x^...

    Text Solution

    |

  20. Compute the integrals: int0^oof(x^n+x^(-n))logx(dx)/x

    Text Solution

    |