Home
Class 12
MATHS
If f(x) = pe^(2x) + qe^x + rx satisfies...

If `f(x) = pe^(2x) + qe^x + rx` satisfies the condition `f(0)=-1, f' (In 2)=31 and int_0^(In4) (f(x)-rx)dx=39/2`, then the value of `(p+q+ r)` is equal to

A

`P=2, Q=-3, R=4`

B

`P=-5, Q=2, R=3`

C

`P=5,Q=-2, R=3`

D

`P=5, Q=-6, R=3`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|16 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept-based) Single Correct Answer Type Questions|10 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 1 ) Single Correct Answer Type Questions|62 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)=pe^(2x)+qe^(x)+rx satisfies the condition f(0)=-1,f'(In2)=31 and int_(0)^(In4)(f(x)-rx)dx=(39)/(2) ,then the value of (p+q+r) is equal to

If f(x)=Ax^(2)+Bx satisfies the conditions f'(1)=8 and int_(0)^(1)f(x)dx=(8)/(3), then

If f(x)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=-1, f'(log2)=31,int_(0)^(log4)(f(x)-cx)dx=(39)/(2) , then

Let f : R to R be continuous function such that f (x) + f (x+1) = 2, for all x in R. If I _(1) int_(0) ^(8) f (x) dx and I _(2) = int _(-1) ^(3) f (x) dx, then the value of I _(2) +2 I _(2) is equal to "________"

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

Ify=f(x) satisfies the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0) then f(x)=

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions
  1. int(-1/sqrt3)^(-1/sqrt3)(x^4)/(1-x^4)cos^(- 1)((2x)/(1+x^2))dx

    Text Solution

    |

  2. The value of int(0)^(pi//2) sqrt( sin 2 theta) sin theta d theta is

    Text Solution

    |

  3. Given I(m) = int(1)^(e ) (log x)^(m) dx. If (Im)/( K) + (l(m-2) )/(L) ...

    Text Solution

    |

  4. If f(x) = pe^(2x) + qe^x + rx satisfies the condition f(0)=-1, f' (I...

    Text Solution

    |

  5. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  6. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dxi s 0 (b) log ...

    Text Solution

    |

  7. If i is the greatest of the definite integrals I1=int0^1 e^-x cos ^2 ...

    Text Solution

    |

  8. v34

    Text Solution

    |

  9. int(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=

    Text Solution

    |

  10. T h ev a l u eofint0^pi(sin(1+1/2)x)/(sin(x/2))dxi s ,n in I ,ngeq0 ...

    Text Solution

    |

  11. The equation of tangent to the curve y=int(x^2)^(x^3)(dt)/(1+t^2) at x...

    Text Solution

    |

  12. The mean value of the function f(x) = (1)/( x^2 + x) on the interval [...

    Text Solution

    |

  13. Evaluate : int1^16tan^(- 1)sqrt(sqrt(x)-1)dx

    Text Solution

    |

  14. Let g (x) = int(0)^(x) f(t) dt , where f is such that (1)/(2) le f (t...

    Text Solution

    |

  15. A function f is defined by f(x)=1/(2^(r-1)),1/(2^r),<xlt=1/(2^(r-1)),r...

    Text Solution

    |

  16. If y= int(1)^(t^3) root(3)(z) log z dz and x = int(sqrtt)^(3) z^(2) l...

    Text Solution

    |

  17. Let I(1) = int(4)^(5) e^((x -5)^(2)) dx and I(2) = 3 int(1//3)^(2//3) ...

    Text Solution

    |

  18. A line tangent to the graph of the function y =f(x) at the point x = a...

    Text Solution

    |

  19. The value of underset(pi)overset(2pi)int [ 2 sin x] dx, where [] repre...

    Text Solution

    |

  20. For x in R and a continuous functio f(x) , let I(1)underset(sin^(2)t)o...

    Text Solution

    |