Home
Class 12
MATHS
The mean value of the function f(x) = (1...

The mean value of the function `f(x) = (1)/( x^2 + x)` on the interval `[1, 3//2]` is

A

`log (6//5)`

B

`2 log (6//5)`

C

`4`

D

`log 3//5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the mean value of the function \( f(x) = \frac{1}{x^2 + x} \) on the interval \([1, \frac{3}{2}]\), we will use the formula for the mean value of a function over an interval \([a, b]\): \[ \text{Mean Value} = \frac{1}{b - a} \int_a^b f(x) \, dx \] ### Step 1: Identify the interval and function Here, \( a = 1 \) and \( b = \frac{3}{2} \). The function is \( f(x) = \frac{1}{x^2 + x} \). ### Step 2: Calculate \( b - a \) \[ b - a = \frac{3}{2} - 1 = \frac{1}{2} \] ### Step 3: Set up the integral We need to compute the integral: \[ \int_1^{\frac{3}{2}} \frac{1}{x^2 + x} \, dx \] ### Step 4: Simplify the integrand We can factor the denominator: \[ x^2 + x = x(x + 1) \] Thus, we can rewrite the integrand: \[ \frac{1}{x^2 + x} = \frac{1}{x(x + 1)} \] ### Step 5: Use partial fraction decomposition We can express \( \frac{1}{x(x + 1)} \) as: \[ \frac{1}{x(x + 1)} = \frac{A}{x} + \frac{B}{x + 1} \] Multiplying through by the denominator \( x(x + 1) \): \[ 1 = A(x + 1) + Bx \] Setting \( x = 0 \) gives \( A = 1 \). Setting \( x = -1 \) gives \( B = -1 \). Thus: \[ \frac{1}{x(x + 1)} = \frac{1}{x} - \frac{1}{x + 1} \] ### Step 6: Set up the integral with partial fractions Now we can rewrite the integral: \[ \int_1^{\frac{3}{2}} \left( \frac{1}{x} - \frac{1}{x + 1} \right) \, dx \] ### Step 7: Integrate Now we integrate each term: \[ \int \frac{1}{x} \, dx = \ln |x| \quad \text{and} \quad \int \frac{1}{x + 1} \, dx = \ln |x + 1| \] Thus, we have: \[ \int_1^{\frac{3}{2}} \left( \frac{1}{x} - \frac{1}{x + 1} \right) \, dx = \left[ \ln |x| - \ln |x + 1| \right]_1^{\frac{3}{2}} \] ### Step 8: Evaluate the definite integral Calculating the limits: \[ \left[ \ln \left( \frac{3}{2} \right) - \ln \left( \frac{5}{2} \right) \right] - \left[ \ln(1) - \ln(2) \right] \] Since \( \ln(1) = 0 \): \[ = \ln \left( \frac{3/2}{5/2} \right) + \ln(2) = \ln \left( \frac{3}{5} \cdot 2 \right) = \ln \left( \frac{6}{5} \right) \] ### Step 9: Substitute back into the mean value formula Now substituting back into the mean value formula: \[ \text{Mean Value} = \frac{1}{\frac{1}{2}} \cdot \ln \left( \frac{6}{5} \right) = 2 \ln \left( \frac{6}{5} \right) \] ### Final Answer Thus, the mean value of the function \( f(x) \) on the interval \([1, \frac{3}{2}]\) is: \[ 2 \ln \left( \frac{6}{5} \right) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|16 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept-based) Single Correct Answer Type Questions|10 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 1 ) Single Correct Answer Type Questions|62 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

The mean value of the function f(x)=(2)/(e^(x)+1) in the interval [0,2] is

Maximum value of the function f(x) =(x)/(8)+(2)/(x) on the interval [1,6] is

A value of c for which the conclusion of mean value theorem holds for the function f(x) = log_(e) x on the interval [1, 3] is:

A value of c for which the conclusion of Mean value theorem holds for the function f(x) = log_(e)x on the interval [1, 3] is

If mean value theorem holds good for the function f(x)=(x-1)/(x) on the interval [1,3] then the value of 'c' is 2 (b) (1)/(sqrt(3))( c) (2)/(sqrt(3))(d)sqrt(3)

Examine the validity of Lagrangel's mean value theorem for the function f(x)=x^(2/3) in the interval [-1,1] .

Examine the validity of Lagrangel's mean value theorem for the function f(x)=x^(2/3) in the interval [-1,1] .

The value of c in Lagrangel's mean value theorem for the function f(x)=|x| in the interval [-1,1] is

The value of c in Lagrange's mean value theorem for the function f(x)=log_ex in the interval [1,3] is

Find the value of c in Mean Value theorem for the function f(x)=(2x+3)/(3x-2) in the interval [1,5] .

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions
  1. int(-1/sqrt3)^(-1/sqrt3)(x^4)/(1-x^4)cos^(- 1)((2x)/(1+x^2))dx

    Text Solution

    |

  2. The value of int(0)^(pi//2) sqrt( sin 2 theta) sin theta d theta is

    Text Solution

    |

  3. Given I(m) = int(1)^(e ) (log x)^(m) dx. If (Im)/( K) + (l(m-2) )/(L) ...

    Text Solution

    |

  4. If f(x) = pe^(2x) + qe^x + rx satisfies the condition f(0)=-1, f' (I...

    Text Solution

    |

  5. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  6. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dxi s 0 (b) log ...

    Text Solution

    |

  7. If i is the greatest of the definite integrals I1=int0^1 e^-x cos ^2 ...

    Text Solution

    |

  8. v34

    Text Solution

    |

  9. int(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=

    Text Solution

    |

  10. T h ev a l u eofint0^pi(sin(1+1/2)x)/(sin(x/2))dxi s ,n in I ,ngeq0 ...

    Text Solution

    |

  11. The equation of tangent to the curve y=int(x^2)^(x^3)(dt)/(1+t^2) at x...

    Text Solution

    |

  12. The mean value of the function f(x) = (1)/( x^2 + x) on the interval [...

    Text Solution

    |

  13. Evaluate : int1^16tan^(- 1)sqrt(sqrt(x)-1)dx

    Text Solution

    |

  14. Let g (x) = int(0)^(x) f(t) dt , where f is such that (1)/(2) le f (t...

    Text Solution

    |

  15. A function f is defined by f(x)=1/(2^(r-1)),1/(2^r),<xlt=1/(2^(r-1)),r...

    Text Solution

    |

  16. If y= int(1)^(t^3) root(3)(z) log z dz and x = int(sqrtt)^(3) z^(2) l...

    Text Solution

    |

  17. Let I(1) = int(4)^(5) e^((x -5)^(2)) dx and I(2) = 3 int(1//3)^(2//3) ...

    Text Solution

    |

  18. A line tangent to the graph of the function y =f(x) at the point x = a...

    Text Solution

    |

  19. The value of underset(pi)overset(2pi)int [ 2 sin x] dx, where [] repre...

    Text Solution

    |

  20. For x in R and a continuous functio f(x) , let I(1)underset(sin^(2)t)o...

    Text Solution

    |