Home
Class 12
MATHS
If int(0)^(pi/2) f ( sin2 x ) sin x dx =...

If `int_(0)^(pi/2) f ( sin2 x ) sin x dx = A int_(0)^(pi/4) f ( cos 2 x ) cos x dx` then the value of `A` is `( sqrt2 = 1.41)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A \) in the equation: \[ \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx = A \int_{0}^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx \] ### Step-by-Step Solution: 1. **Define the Left-Hand Side Integral**: Let \[ I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx \] 2. **Use the Property of Definite Integrals**: We can use the property of definite integrals which states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(b + a - x) \, dx \] In our case, we will replace \( x \) with \( \frac{\pi}{2} - x \): \[ I = \int_{0}^{\frac{\pi}{2}} f(\sin(2(\frac{\pi}{2} - x))) \sin(\frac{\pi}{2} - x) \, dx \] 3. **Simplify the Integral**: We know that: \[ \sin(2(\frac{\pi}{2} - x)) = \sin(\pi - 2x) = \sin(2x) \] and \[ \sin(\frac{\pi}{2} - x) = \cos x \] So we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \cos x \, dx \] 4. **Combine the Two Expressions for \( I \)**: Now we have two expressions for \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx \] \[ I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \cos x \, dx \] Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) (\sin x + \cos x) \, dx \] 5. **Factor Out the Common Terms**: We can factor out \( \frac{1}{\sqrt{2}} \) from \( \sin x + \cos x \): \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] Thus, \[ 2I = \sqrt{2} \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin\left(x + \frac{\pi}{4}\right) \, dx \] 6. **Change of Variables**: Now, we change variables in the right-hand side integral: Let \( t = x - \frac{\pi}{4} \), then \( x = t + \frac{\pi}{4} \) and \( dx = dt \). The limits change accordingly: When \( x = 0 \), \( t = -\frac{\pi}{4} \) and when \( x = \frac{\pi}{2} \), \( t = \frac{\pi}{4} \). 7. **Final Expression**: After substituting, we can express the integral in terms of \( t \): \[ 2I = \sqrt{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f(\sin(2(t + \frac{\pi}{4}))) \cos t \, dt \] Using the properties of sine and cosine, we can simplify this integral. 8. **Equate the Two Integrals**: Now we equate the two integrals: \[ I = A \int_{0}^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx \] From our calculations, we find that: \[ A = \sqrt{2} \] ### Conclusion: Thus, the value of \( A \) is: \[ A = \sqrt{2} \approx 1.41 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept-based) Single Correct Answer Type Questions|10 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) Single Correct Answer Type Questions|43 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions|33 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

Show that: int_(0)^( pi/2)f(sin2x)sin xdx=sqrt(2)int_(0)^( pi/4)f(cos2x)cos xdx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^( pi/2)(sin x)/(1+cos x)dx

If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =

int_(0)^((pi)/(2))(x sin x*cos x)dx

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^( pi/2)sin^(2)x cos x dx