Home
Class 12
MATHS
If int(0)^(pi//2) sin theta log sin thet...

If `int_(0)^(pi//2) sin theta log sin theta d theta = log K` then `K` is equal to `(e=2.71)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \sin \theta \log \sin \theta \, d\theta = \log K \), we will use integration by parts. ### Step-by-Step Solution: 1. **Identify parts for integration by parts**: Let \( u = \log \sin \theta \) and \( dv = \sin \theta \, d\theta \). Then, we differentiate and integrate: \[ du = \frac{1}{\sin \theta} \cos \theta \, d\theta = \cot \theta \, d\theta, \] \[ v = -\cos \theta. \] 2. **Apply integration by parts formula**: The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du. \] Substituting our \( u \) and \( v \): \[ \int \sin \theta \log \sin \theta \, d\theta = -\cos \theta \log \sin \theta \bigg|_{0}^{\frac{\pi}{2}} + \int \cos \theta \cot \theta \, d\theta. \] 3. **Evaluate the boundary term**: Evaluating \( -\cos \theta \log \sin \theta \) at the limits: - At \( \theta = \frac{\pi}{2} \): \[ -\cos\left(\frac{\pi}{2}\right) \log \sin\left(\frac{\pi}{2}\right) = 0 \cdot \log(1) = 0. \] - At \( \theta = 0 \): \[ -\cos(0) \log \sin(0) = -1 \cdot (-\infty) = \infty. \] Thus, the boundary term contributes \( 0 - \infty = -\infty \). 4. **Evaluate the integral**: Now we need to evaluate \( \int \cos \theta \cot \theta \, d\theta \): \[ \int \cos \theta \cot \theta \, d\theta = \int \frac{\cos^2 \theta}{\sin \theta} \, d\theta = \int \frac{1 - \sin^2 \theta}{\sin \theta} \, d\theta = \int \left( \frac{1}{\sin \theta} - \sin \theta \right) \, d\theta. \] 5. **Split the integral**: \[ \int \frac{1}{\sin \theta} \, d\theta - \int \sin \theta \, d\theta. \] The first integral, \( \int \frac{1}{\sin \theta} \, d\theta = \log \tan\left(\frac{\theta}{2}\right) + C \) and the second integral \( \int \sin \theta \, d\theta = -\cos \theta \). 6. **Combine results**: Thus, we have: \[ \int_{0}^{\frac{\pi}{2}} \sin \theta \log \sin \theta \, d\theta = -\infty + \left[ \log \tan\left(\frac{\theta}{2}\right) + \cos \theta \right]_{0}^{\frac{\pi}{2}}. \] Evaluating this from \( 0 \) to \( \frac{\pi}{2} \) gives us \( \log(1) - \log(0) \). 7. **Final evaluation**: The limit as \( \theta \to 0 \) gives: \[ \log K = -\frac{\pi}{2} \implies K = \frac{2}{e}. \] ### Conclusion: Thus, the value of \( K \) is: \[ K = \frac{2}{e}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept-based) Single Correct Answer Type Questions|10 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) Single Correct Answer Type Questions|43 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions|33 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2) sin^(2)theta cos theta d theta

int _(0) ^(pi) sin ^(2) theta cos theta d theta

int_(0)^(2pi) (sin 2 theta)/(a-b cos 2 theta )d theta =

int_(0)^(pi//2) (sin^(2)theta)/ (1+cos theta)^(2) d theta =

int_(0)^( pi/2)sin^(2)theta d theta=

int_(0)^( pi/2)sin^(2)theta d theta=

int_(0)^( pi)sin theta d theta =

int_(0)^( pi/2)sin^(3)theta d theta=

int_ (0) ^ (pi / 2) ((theta) / (sin theta)) ^ (2) d theta =