Home
Class 12
MATHS
Let f(x)=int0^x(dt)/(sqrt(1+t^3))a n dg(...

Let `f(x)=int_0^x(dt)/(sqrt(1+t^3))a n dg(x)` be the inverse of `f(x)` . Then the value of `4(g^(x))/((g(x))^2)i s____`

Text Solution

Verified by Experts

The correct Answer is:
`1.50`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept-based) Single Correct Answer Type Questions|10 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) Single Correct Answer Type Questions|43 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions|33 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) andg(x) be the inverse of f(x). Then the value of 4(g'(x))/((g(x))^(2))is_(--)

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f. Then,the value of g'(x) is

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4)) and g be the inverse of f. Then , the value of g'(0) is

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f then the value of g^(')(0) is

Let f(x)=int_(4)^(x)(dt)/(sqrt(1+t^(3))) and g be the inverse of f ,then the value of g'(0) is equal to

Let f(x)=int_(x)^(3)(dt)/(sqrt(1+t^(5))) and g be the inverse of f. Then the value of g'(0) is equal to

Let f(x)=int_(0)^(1)|x-t|dt, then

Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3) . If g(x) is inverse of f(x) then the value of (1)/(g^(')(-(7)/(6))) is