Home
Class 12
MATHS
Let I= int(0)^(20 20) ( root(3) (x^2) + ...

Let `I= int_(0)^(20 20) ( root(3) (x^2) + root(3) ( (1010-x)^(2) ) )/( root(3)(x^(2) ) + 2 root(3) ((1010-x)^(2)) + root(3) ( (2020 - x)^(2) ) ` dx then `(I)/( 100)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{2020} \frac{\sqrt[3]{x^2} + \sqrt[3]{(1010 - x)^2}}{\sqrt[3]{x^2} + 2\sqrt[3]{(1010 - x)^2} + \sqrt[3]{(2020 - x)^2}} \, dx, \] we will use the property of definite integrals, which states that \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] ### Step 1: Apply the property of definite integrals Let \( a = 0 \) and \( b = 2020 \). We can rewrite the integral as: \[ I = \int_{0}^{2020} \frac{\sqrt[3]{(2020 - x)^2} + \sqrt[3]{(1010 - (2020 - x))^2}}{\sqrt[3]{(2020 - x)^2} + 2\sqrt[3]{(1010 - (2020 - x))^2} + \sqrt[3]{x^2}} \, dx. \] ### Step 2: Simplify the expression Now, simplifying the terms inside the integral: - The first term in the numerator becomes \( \sqrt[3]{(2020 - x)^2} \). - The second term becomes \( \sqrt[3]{(1010 - (2020 - x))^2} = \sqrt[3]{(x - 1010)^2} \). Thus, the integral can be rewritten as: \[ I = \int_{0}^{2020} \frac{\sqrt[3]{(2020 - x)^2} + \sqrt[3]{(x - 1010)^2}}{\sqrt[3]{(2020 - x)^2} + 2\sqrt[3]{(x - 1010)^2} + \sqrt[3]{x^2}} \, dx. \] ### Step 3: Add the two integrals Now, we have two expressions for \( I \): 1. \( I = \int_{0}^{2020} \frac{\sqrt[3]{x^2} + \sqrt[3]{(1010 - x)^2}}{\sqrt[3]{x^2} + 2\sqrt[3]{(1010 - x)^2} + \sqrt[3]{(2020 - x)^2}} \, dx \) 2. \( I = \int_{0}^{2020} \frac{\sqrt[3]{(2020 - x)^2} + \sqrt[3]{(x - 1010)^2}}{\sqrt[3]{(2020 - x)^2} + 2\sqrt[3]{(x - 1010)^2} + \sqrt[3]{x^2}} \, dx \) Adding these two integrals gives: \[ 2I = \int_{0}^{2020} \frac{\sqrt[3]{x^2} + \sqrt[3]{(1010 - x)^2} + \sqrt[3]{(2020 - x)^2} + \sqrt[3]{(x - 1010)^2}}{\sqrt[3]{x^2} + 2\sqrt[3]{(1010 - x)^2} + \sqrt[3]{(2020 - x)^2}} \, dx. \] ### Step 4: Evaluate the integral Notice that the numerator and denominator are symmetric and will simplify to: \[ 2I = \int_{0}^{2020} 1 \, dx = 2020. \] Thus, we have: \[ I = \frac{2020}{2} = 1010. \] ### Step 5: Find \( \frac{I}{100} \) Finally, we need to find: \[ \frac{I}{100} = \frac{1010}{100} = 10.1. \] ### Final Answer Thus, the value of \( \frac{I}{100} \) is \[ \boxed{10.1}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept-based) Single Correct Answer Type Questions|10 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) Single Correct Answer Type Questions|43 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions|33 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

root(3)(x^(2))+root(3)(x^(2))=3

int(1)/(root(3)(x^(2)))dx

int root(3)(x^(2))dx

If f(x)=root(3)((1-x^(2)))+root(3)((1+x^(2))) , then f(x) is :

"int(x-1)/(root(3)(x^(2)))dx

int root(3)(x) ( "ln" x)^(2)dx .

int_(3)^(29)(root(3)((x-2)^(2))dx)/(3)

I= int ( x^2 + 1) /( root( 3) ( x^(3) + 3x + 1) )d x .

lim_(x rarr2)(x-2)/(root(3)(x)-root(3)(2))