Home
Class 12
MATHS
The value of the integral int(-pi//2)^(p...

The value of the integral `int_(-pi//2)^(pi//2) sin^(4) x (1+ log ((2+ sinx)/( 2- sin x))) dx` is

A

`(3)/(8) pi`

B

`0`

C

`(3)/( 16) pi`

D

`(3)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^4 x \left(1 + \log \left(\frac{2 + \sin x}{2 - \sin x}\right)\right) dx, \] we can break it down into two parts: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^4 x \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^4 x \log \left(\frac{2 + \sin x}{2 - \sin x}\right) dx. \] ### Step 1: Evaluate the first integral The first integral is \[ I_1 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^4 x \, dx. \] Since \(\sin^4 x\) is an even function, we can simplify this integral: \[ I_1 = 2 \int_{0}^{\frac{\pi}{2}} \sin^4 x \, dx. \] ### Step 2: Use the power-reduction formula We can use the power-reduction formula for \(\sin^4 x\): \[ \sin^4 x = \left(\sin^2 x\right)^2 = \left(\frac{1 - \cos(2x)}{2}\right)^2 = \frac{1 - 2\cos(2x) + \cos^2(2x)}{4}. \] Using \(\cos^2(2x) = \frac{1 + \cos(4x)}{2}\), we get: \[ \sin^4 x = \frac{1}{4} \left(1 - 2\cos(2x) + \frac{1 + \cos(4x)}{2}\right) = \frac{1}{8} + \frac{1}{4}\cos(4x) - \frac{1}{2}\cos(2x). \] ### Step 3: Integrate \(I_1\) Now we can integrate: \[ I_1 = 2 \int_0^{\frac{\pi}{2}} \left(\frac{1}{8} - \frac{1}{2}\cos(2x) + \frac{1}{8}\cos(4x)\right) dx. \] Calculating each term separately: 1. \(\int_0^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}\) 2. \(\int_0^{\frac{\pi}{2}} \cos(2x) \, dx = 0\) (since \(\sin(2x)\) evaluated from \(0\) to \(\frac{\pi}{2}\) is \(0\)) 3. \(\int_0^{\frac{\pi}{2}} \cos(4x) \, dx = 0\) (similarly, \(\sin(4x)\) evaluated from \(0\) to \(\frac{\pi}{2}\) is \(0\)) Thus, \[ I_1 = 2 \left(\frac{1}{8} \cdot \frac{\pi}{2} - 0 + 0\right) = \frac{\pi}{8}. \] ### Step 4: Evaluate the second integral Now we need to evaluate \[ I_2 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^4 x \log \left(\frac{2 + \sin x}{2 - \sin x}\right) dx. \] Using the property of logarithms, we can rewrite: \[ \log \left(\frac{2 + \sin x}{2 - \sin x}\right) = \log(2 + \sin x) - \log(2 - \sin x). \] Now, we check the behavior of \(\log \left(\frac{2 + \sin x}{2 - \sin x}\right)\): When we replace \(x\) with \(-x\): \[ \log \left(\frac{2 + \sin(-x)}{2 - \sin(-x)}\right) = \log \left(\frac{2 - \sin x}{2 + \sin x}\right) = -\log \left(\frac{2 + \sin x}{2 - \sin x}\right). \] This shows that \(\sin^4 x \log \left(\frac{2 + \sin x}{2 - \sin x}\right)\) is an odd function. Therefore, \[ I_2 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^4 x \log \left(\frac{2 + \sin x}{2 - \sin x}\right) dx = 0. \] ### Step 5: Combine results Finally, we combine both integrals: \[ I = I_1 + I_2 = \frac{\pi}{8} + 0 = \frac{\pi}{8}. \] ### Final Answer Thus, the value of the integral is \[ \boxed{\frac{\pi}{8}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Numerical Answer Type Questions|19 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int _(0)^(pi//2) sin ^(5) x dx is

The value of the integral int_(-(pi)/(2))^((pi)/(2))cos^(4)x(1+log((2+sin x)/(2-sin x)))dx is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

The value of the integral int_(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi+x)) cos x dx

The value of the integral int_(0)^(pi) | sin 2x| dx is

The value of the integral int_(0)^(pi)x log sin x dx is

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-Questions from Previous Years. AIEEE/ JEE Main Papers
  1. If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)(1-x+x^2) dx then int0^1 tan^(...

    Text Solution

    |

  2. underset (n rarr infty )(lim) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is e...

    Text Solution

    |

  3. int4^10([x^2])/([x^2-28 x+196]+[x^2])dx is (A) 3 (B) 5 (C) 7 (D) 9

    Text Solution

    |

  4. The integral int(pi/12)^(pi/4)(8cos2x)/((tanx+cotx)^3)dx equals

    Text Solution

    |

  5. If int(1)^(2) (dx)/( (x^(2) -2x + 4)^(3/2))=(k)/( k+5) then k is equal...

    Text Solution

    |

  6. int(pi//4)^(3pi//4)(dx)/(1+cos x)=

    Text Solution

    |

  7. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  8. If i is the greatest of the definite integrals I1=int0^1 e^-x cos ^2 ...

    Text Solution

    |

  9. The value of the integral int(-pi//2)^(pi//2) sin^(4) x (1+ log ((2+ s...

    Text Solution

    |

  10. The value of int(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

    Text Solution

    |

  11. The value of int(0)^(pi)|cos x|^(3)dx is :

    Text Solution

    |

  12. If int(0)^(pi//3)(tantheta)/(sqrt(2ksectheta))d theta=1-(1)/(sqrt(2)),...

    Text Solution

    |

  13. lim(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))...

    Text Solution

    |

  14. If |f(x)-f(y)|le2|x-y|^((3)/(2)) AAx,yinR and f(0)=1 then value of int...

    Text Solution

    |

  15. The value of int(-pi//2)^(pi//2)(dx)/([x] + [ sin x] +4), where [t]...

    Text Solution

    |

  16. If int0^xf(t)dt=x^2+intx^1t^2f(t)dt, then f^(prime)(1/2) is

    Text Solution

    |

  17. The value of the integral underset(-2)overset2intsin^2x/(-2[x/pi]+1/2)...

    Text Solution

    |

  18. The integral int(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"(e)x dx is...

    Text Solution

    |

  19. Let f and g be continuous functions on [ 0 , a] such that f(x)=f(x)=...

    Text Solution

    |

  20. The integral int(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x)) equals

    Text Solution

    |