Home
Class 12
MATHS
The value of int(0)^(1) "max" (e^(x) , e...

The value of `int_(0)^(1) "max" (e^(x) , e^(1-x) ) dx` equals

A

`2(e-1)`

B

`2(e- sqrte)`

C

`2 ( e + sqrte)`

D

`2( e+ sqrte)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1} \max(e^x, e^{1-x}) \, dx \), we first need to determine where the two functions \( e^x \) and \( e^{1-x} \) intersect within the interval \([0, 1]\). ### Step 1: Find the intersection points To find the intersection points, we set \( e^x = e^{1-x} \). Taking the natural logarithm on both sides gives: \[ x = 1 - x \] Solving for \( x \): \[ 2x = 1 \implies x = \frac{1}{2} \] ### Step 2: Determine which function is greater in each interval Now we will evaluate the functions at the intersection point and at the endpoints of the interval: - At \( x = 0 \): \[ e^0 = 1 \quad \text{and} \quad e^{1-0} = e \quad \Rightarrow \quad \max(1, e) = e \] - At \( x = 1 \): \[ e^1 = e \quad \text{and} \quad e^{1-1} = 1 \quad \Rightarrow \quad \max(e, 1) = e \] - At \( x = \frac{1}{2} \): \[ e^{1/2} = \sqrt{e} \quad \text{and} \quad e^{1-1/2} = \sqrt{e} \quad \Rightarrow \quad \max(\sqrt{e}, \sqrt{e}) = \sqrt{e} \] ### Step 3: Set up the integral From \( x = 0 \) to \( x = \frac{1}{2} \), \( e^{1-x} \) is greater than \( e^x \), and from \( x = \frac{1}{2} \) to \( x = 1 \), \( e^x \) is greater than \( e^{1-x} \). Therefore, we can express the integral as: \[ \int_{0}^{1} \max(e^x, e^{1-x}) \, dx = \int_{0}^{\frac{1}{2}} e^{1-x} \, dx + \int_{\frac{1}{2}}^{1} e^x \, dx \] ### Step 4: Calculate the integrals 1. **First integral**: \[ \int_{0}^{\frac{1}{2}} e^{1-x} \, dx = e \int_{0}^{\frac{1}{2}} e^{-x} \, dx = e \left[-e^{-x}\right]_{0}^{\frac{1}{2}} = e \left[-e^{-\frac{1}{2}} + 1\right] = e \left(1 - \frac{1}{\sqrt{e}}\right) = e - \sqrt{e} \] 2. **Second integral**: \[ \int_{\frac{1}{2}}^{1} e^x \, dx = \left[e^x\right]_{\frac{1}{2}}^{1} = e - e^{\frac{1}{2}} = e - \sqrt{e} \] ### Step 5: Combine the results Now we add the results of the two integrals: \[ \int_{0}^{1} \max(e^x, e^{1-x}) \, dx = (e - \sqrt{e}) + (e - \sqrt{e}) = 2e - 2\sqrt{e} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{1} \max(e^x, e^{1-x}) \, dx = 2(e - \sqrt{e}) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/ JEE Main Papers|65 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) x e^(x) dx=1

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int_(0)^(1) (1)/(e^(x) +e^(-x)) dx

The value of int_(0)^(1)(3e^(3x)+e^(-x))dx will be

The value of int_(0) ^(1) (dx )/( e ^(x) + e) is equal to

The value of int_(0)^(1)x^(2)e^(x)dx is equal to

int_(0)^(1)x e^(x)dx=

int_(0)^(1) (dx)/(e^(x)+e^(-x))

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-Questions from Previous Years. B-Architecture Entrance Examination Papers
  1. Evaluate int(-4)^(-5)e^((x+5^(2))) dx+3int(1//3)^(2//3)e^(9(x-(2)/(3))...

    Text Solution

    |

  2. If f is continuously differentiable function then int(0)^(1.5) [x^2] f...

    Text Solution

    |

  3. int(-a)^(a) log (x+ sqrt(x^(2) + 1 ) ) dx

    Text Solution

    |

  4. If f(x) = (1)/( 2^n) when (1)/( 2^(n+1) ) lt x le (1)/( 2^n) , n= 0,...

    Text Solution

    |

  5. The value of int(0)^(1) x^(2) (1- x)^(9) dx is

    Text Solution

    |

  6. The value of int(0)^(1) "max" (e^(x) , e^(1-x) ) dx equals

    Text Solution

    |

  7. int(0)^(pi//2) x sin cos x dx=?

    Text Solution

    |

  8. Let f: R to R be defined by f(x) = int(0)^(1) (x^2 + t^2) /( 2-t) dt. ...

    Text Solution

    |

  9. The equation of a curve is given by y= f(x), where f'(x) is a continuo...

    Text Solution

    |

  10. Using the fact that 0 le f(x) le g(x) , c lt x lt d rArr int(c)^(d) f(...

    Text Solution

    |

  11. lim(n to oo) (1)/(n) [ 1+ (n^2)/( n^2+ 1^2) + (n^2)/( n^2+ 2^2) + …+ ...

    Text Solution

    |

  12. If f(x) = x [x], then for any real number a and b with a lt b, then va...

    Text Solution

    |

  13. The integral int( sqrt(log 5) )^( sqrt(log 7 ) ) ( x cos x^(2) )/( cos...

    Text Solution

    |

  14. If f(x)=(e^(2))/(1+e^(x)),I(1)=overset(f(a))underset(f(-a))int xg{x(1-...

    Text Solution

    |

  15. The integral int(0)^(1//2) (e^(x) (2 -x ^2) )/( (1-x)^(3//2) (1+x)^(1/...

    Text Solution

    |

  16. The integral I= int(0)^(2) [x^2] dx ([x] denotes the greatest integer ...

    Text Solution

    |

  17. The integral int(pi//24)^(5pi//24) (dx)/( 1+ root(3)(tan 2x) ) is equa...

    Text Solution

    |

  18. If f(x) = int(e)^(e^(x) ) log ((x)/( log t))dt, then the value of (3...

    Text Solution

    |