Home
Class 12
MATHS
The integral I= int(0)^(2) [x^2] dx ([x]...

The integral `I= int_(0)^(2) [x^2] dx ([x]` denotes the greatest integer less than or equal to `x)` is equal to:

A

`5 -2 sqrt3`

B

`5 - sqrt2 - sqrt3`

C

`6 - sqrt2 - sqrt3`

D

`3 - sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2} [x^2] \, dx \), where \([x]\) denotes the greatest integer less than or equal to \(x\), we will break down the integral based on the behavior of the function \([x^2]\) over the interval \([0, 2]\). ### Step 1: Determine the range of \(x^2\) over the interval \([0, 2]\) When \(x\) varies from \(0\) to \(2\): - At \(x = 0\), \(x^2 = 0\) - At \(x = 2\), \(x^2 = 4\) Thus, \(x^2\) ranges from \(0\) to \(4\). ### Step 2: Identify the intervals where \([x^2]\) is constant The function \([x^2]\) will take on different integer values in the following intervals: - For \(0 \leq x < 1\): \(x^2\) ranges from \(0\) to \(1\), so \([x^2] = 0\). - For \(1 \leq x < \sqrt{2}\): \(x^2\) ranges from \(1\) to \(2\), so \([x^2] = 1\). - For \(\sqrt{2} \leq x < \sqrt{3}\): \(x^2\) ranges from \(2\) to \(3\), so \([x^2] = 2\). - For \(\sqrt{3} \leq x < 2\): \(x^2\) ranges from \(3\) to \(4\), so \([x^2] = 3\). ### Step 3: Set up the integral based on these intervals We can now express the integral \(I\) as the sum of integrals over these intervals: \[ I = \int_{0}^{1} 0 \, dx + \int_{1}^{\sqrt{2}} 1 \, dx + \int_{\sqrt{2}}^{\sqrt{3}} 2 \, dx + \int_{\sqrt{3}}^{2} 3 \, dx \] ### Step 4: Evaluate each integral 1. **First Integral**: \[ \int_{0}^{1} 0 \, dx = 0 \] 2. **Second Integral**: \[ \int_{1}^{\sqrt{2}} 1 \, dx = [x]_{1}^{\sqrt{2}} = \sqrt{2} - 1 \] 3. **Third Integral**: \[ \int_{\sqrt{2}}^{\sqrt{3}} 2 \, dx = 2[x]_{\sqrt{2}}^{\sqrt{3}} = 2(\sqrt{3} - \sqrt{2}) \] 4. **Fourth Integral**: \[ \int_{\sqrt{3}}^{2} 3 \, dx = 3[x]_{\sqrt{3}}^{2} = 3(2 - \sqrt{3}) \] ### Step 5: Combine the results Now we combine all the results: \[ I = 0 + (\sqrt{2} - 1) + 2(\sqrt{3} - \sqrt{2}) + 3(2 - \sqrt{3}) \] \[ I = \sqrt{2} - 1 + 2\sqrt{3} - 2\sqrt{2} + 6 - 3\sqrt{3} \] \[ I = (6 - 1) + (\sqrt{2} - 2\sqrt{2}) + (2\sqrt{3} - 3\sqrt{3}) \] \[ I = 5 - \sqrt{2} - \sqrt{3} \] ### Final Answer Thus, the value of the integral \(I\) is: \[ I = 5 - \sqrt{2} - \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/ JEE Main Papers|65 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(15/2)[x-1]dx= where [x] denotes the greatest integer less than or equal to x

The value of the integral, int_1^3 [x^2-2x–2]dx , where [x] denotes the greatest integer less than or equal to x, is :

The value of int_(0)^(2)x^([x^(2)+1])(dx), where [x] is the greatest integer less than or equal to x is

The value of int_(0)^(2) x^([x^(2) +1]) dx , where [x] is the greatest integer less than or equal to x is

Let [x] denote the greatest integer less than or equal to x. If x=(sqrt(3)+1)^(5), then [x] is equal to

The value of the integral int_(-2)^2 sin^2x/(-2[x/pi]+1/2)dx (where [x] denotes the greatest integer less then or equal to x) is

Let [x] denotes the greatest integer less than or equal to x and f(x)= [tan^(2)x] .Then

If [x] denotes the greatest integer less than or equal to* then [(1+0.0001)^(1000)] equals

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-Questions from Previous Years. B-Architecture Entrance Examination Papers
  1. Evaluate int(-4)^(-5)e^((x+5^(2))) dx+3int(1//3)^(2//3)e^(9(x-(2)/(3))...

    Text Solution

    |

  2. If f is continuously differentiable function then int(0)^(1.5) [x^2] f...

    Text Solution

    |

  3. int(-a)^(a) log (x+ sqrt(x^(2) + 1 ) ) dx

    Text Solution

    |

  4. If f(x) = (1)/( 2^n) when (1)/( 2^(n+1) ) lt x le (1)/( 2^n) , n= 0,...

    Text Solution

    |

  5. The value of int(0)^(1) x^(2) (1- x)^(9) dx is

    Text Solution

    |

  6. The value of int(0)^(1) "max" (e^(x) , e^(1-x) ) dx equals

    Text Solution

    |

  7. int(0)^(pi//2) x sin cos x dx=?

    Text Solution

    |

  8. Let f: R to R be defined by f(x) = int(0)^(1) (x^2 + t^2) /( 2-t) dt. ...

    Text Solution

    |

  9. The equation of a curve is given by y= f(x), where f'(x) is a continuo...

    Text Solution

    |

  10. Using the fact that 0 le f(x) le g(x) , c lt x lt d rArr int(c)^(d) f(...

    Text Solution

    |

  11. lim(n to oo) (1)/(n) [ 1+ (n^2)/( n^2+ 1^2) + (n^2)/( n^2+ 2^2) + …+ ...

    Text Solution

    |

  12. If f(x) = x [x], then for any real number a and b with a lt b, then va...

    Text Solution

    |

  13. The integral int( sqrt(log 5) )^( sqrt(log 7 ) ) ( x cos x^(2) )/( cos...

    Text Solution

    |

  14. If f(x)=(e^(2))/(1+e^(x)),I(1)=overset(f(a))underset(f(-a))int xg{x(1-...

    Text Solution

    |

  15. The integral int(0)^(1//2) (e^(x) (2 -x ^2) )/( (1-x)^(3//2) (1+x)^(1/...

    Text Solution

    |

  16. The integral I= int(0)^(2) [x^2] dx ([x] denotes the greatest integer ...

    Text Solution

    |

  17. The integral int(pi//24)^(5pi//24) (dx)/( 1+ root(3)(tan 2x) ) is equa...

    Text Solution

    |

  18. If f(x) = int(e)^(e^(x) ) log ((x)/( log t))dt, then the value of (3...

    Text Solution

    |