Home
Class 12
MATHS
If f(x) = int(e)^(e^(x) ) log ((x)/( l...

If `f(x) = int_(e)^(e^(x) ) log ((x)/( log t))dt`, then the value of `(3f'(3)) / e`

A

`- 3 log 3`

B

`3 log 3`

C

`e^(3) - e`

D

`e^(2) -1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/ JEE Main Papers|65 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

If F(x)=int_(e^(2x))^(e^(3x))(t)/(log_(e)t)dt, then the first derivative of F(x) with respect to ln x at x=ln2 is

If F(x) =int_(x^(2))^(x^(3)) log t dt (x gt 0) , then F'(x) equals

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If f(x)=(log)_(e)((log)_(e)x), then write the value of f'(e)

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int(e^(x log a)+e^(a log x)+e^(a log a))dx

If f(x)=1+(1)/(x)int_(1)^(x)f(t)dt, then the value of (e^(-1)) is

Suppose f, f' and f'' are continuous on [0, e] and that f'(e )= f(e ) = f(1) = 1 and int_(1)^(e )(f(x))/(x^(2))dx=(1)/(2) , then the value of int_(1)^(e ) f''(x)ln xdx equals :

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-Questions from Previous Years. B-Architecture Entrance Examination Papers
  1. Evaluate int(-4)^(-5)e^((x+5^(2))) dx+3int(1//3)^(2//3)e^(9(x-(2)/(3))...

    Text Solution

    |

  2. If f is continuously differentiable function then int(0)^(1.5) [x^2] f...

    Text Solution

    |

  3. int(-a)^(a) log (x+ sqrt(x^(2) + 1 ) ) dx

    Text Solution

    |

  4. If f(x) = (1)/( 2^n) when (1)/( 2^(n+1) ) lt x le (1)/( 2^n) , n= 0,...

    Text Solution

    |

  5. The value of int(0)^(1) x^(2) (1- x)^(9) dx is

    Text Solution

    |

  6. The value of int(0)^(1) "max" (e^(x) , e^(1-x) ) dx equals

    Text Solution

    |

  7. int(0)^(pi//2) x sin cos x dx=?

    Text Solution

    |

  8. Let f: R to R be defined by f(x) = int(0)^(1) (x^2 + t^2) /( 2-t) dt. ...

    Text Solution

    |

  9. The equation of a curve is given by y= f(x), where f'(x) is a continuo...

    Text Solution

    |

  10. Using the fact that 0 le f(x) le g(x) , c lt x lt d rArr int(c)^(d) f(...

    Text Solution

    |

  11. lim(n to oo) (1)/(n) [ 1+ (n^2)/( n^2+ 1^2) + (n^2)/( n^2+ 2^2) + …+ ...

    Text Solution

    |

  12. If f(x) = x [x], then for any real number a and b with a lt b, then va...

    Text Solution

    |

  13. The integral int( sqrt(log 5) )^( sqrt(log 7 ) ) ( x cos x^(2) )/( cos...

    Text Solution

    |

  14. If f(x)=(e^(2))/(1+e^(x)),I(1)=overset(f(a))underset(f(-a))int xg{x(1-...

    Text Solution

    |

  15. The integral int(0)^(1//2) (e^(x) (2 -x ^2) )/( (1-x)^(3//2) (1+x)^(1/...

    Text Solution

    |

  16. The integral I= int(0)^(2) [x^2] dx ([x] denotes the greatest integer ...

    Text Solution

    |

  17. The integral int(pi//24)^(5pi//24) (dx)/( 1+ root(3)(tan 2x) ) is equa...

    Text Solution

    |

  18. If f(x) = int(e)^(e^(x) ) log ((x)/( log t))dt, then the value of (3...

    Text Solution

    |