Home
Class 12
MATHS
Line through P(a, 2) meets the ellipse ...

Line through `P(a, 2)` meets the ellipse `x^2/9+y^2/4=1` at A and D and meets the coordinate axes at B and C so that PA, PB, PC, PD are in G.P., then possible values of a can be:

A

`(2)/(13)`

B

`(13)/(2)`

C

`(13)/(5)`

D

`(5)/(13)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CARTESIAN SYSTEM OF RECTANGULAR COORDINATES AND STRAIGHT LINES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2) SINGLE CORRECT ANSWER TYPE QUESTIONS|30 Videos
  • CARTESIAN SYSTEM OF RECTANGULAR COORDINATES AND STRAIGHT LINES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|25 Videos
  • CARTESIAN SYSTEM OF RECTANGULAR COORDINATES AND STRAIGHT LINES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (CONCEPT - BASED) SINGLE CORRECT ANSWER TYPE QUESTIONS|15 Videos
  • AREA BY INTEGRATION

    MCGROW HILL PUBLICATION|Exercise Question from Previous Years. B-Architecture Entrance Examination Papers|12 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos

Similar Questions

Explore conceptually related problems

The line y=2t^2 meets the ellipse (x^2)/(9)+(y^2)/(4)=1 in real points if

The plane 2x+3y+4z=12 meets the coordinate axes in A,B and C. The centroid of triangleABC is

The line x=t^(2) meets the ellipse x^(2)+(y^(2))/(9)=1 at real and distinct points if and only if |t| 1( d) none of these

If a line through P(-2,3) meets the circle x^(2)+y^(2)-4x+2y+k=0 at A and B such that PA.PB =31 then the radius of the circle is

A line passes through the point P (5,6) outside the circle x^(2) + y ^(2) = 12 and meets the circle at A and B. The value of PA. PB is equal to

MCGROW HILL PUBLICATION-CARTESIAN SYSTEM OF RECTANGULAR COORDINATES AND STRAIGHT LINES -SOLVED EXAMPLES (LEVEL 1) SINGLE CORRECT ANSWER TYPE QUESTIONS
  1. Let PQR be a right - angled isosceles triangle , right angled at P(2,1...

    Text Solution

    |

  2. The orthocentre of the triangle formed by the lines xy = 0 and 2x+3y-5...

    Text Solution

    |

  3. The equations of the sides of a parallelogram are x = 2, x = 3 and y =...

    Text Solution

    |

  4. The lines joining the origin to the point of intersection of The lines...

    Text Solution

    |

  5. The lines p(p^2+1)x-y+q=0 and (p^2+1)^2x+(p^2+1)y+2q=0 are perpendicul...

    Text Solution

    |

  6. The line L given by x/5+y/b=1 passes through the point (13,32). The li...

    Text Solution

    |

  7. Consider three points P = (-sin (beta-alpha), -cos beta), Q = (cos(bet...

    Text Solution

    |

  8. L1 = x + 3y-5=0, L2= 3x-ky-1=0 , L3 = 5x + 2y-12 = 0 are concurrent i...

    Text Solution

    |

  9. Consider the lines L(1): x+y=10, " " L(2):x+y=60 L(3):x=40, "...

    Text Solution

    |

  10. Line through P(a, 2) meets the ellipse x^2/9+y^2/4=1 at A and D and m...

    Text Solution

    |

  11. The parallelogram is bounded by the lines y=ax + c; y=ax + d; y=bx + c...

    Text Solution

    |

  12. A straight line L through the point (3,-2) is inclined at an angle 60^...

    Text Solution

    |

  13. Given the four lines with the equations x+2y-3=0, 3x+4y-7=0, 2x+3y...

    Text Solution

    |

  14. The point (4, 1) undergoes the following three transformations success...

    Text Solution

    |

  15. If the sum of the distances of a point from two perpendicular lines in...

    Text Solution

    |

  16. The diagonals of a parallelogram PQRS are along the lines x+3y =4 and ...

    Text Solution

    |

  17. Let A0A1A2A3A4A5 be a regular hexagon inscribed in a circle of unit ra...

    Text Solution

    |

  18. The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0...

    Text Solution

    |

  19. A ray of light travels along the line 2x-3y+5=0 and strikes a plane mi...

    Text Solution

    |

  20. Let 0 lt alpha lt (pi)/(2) be a fixed angle . If p=(costheta, sin the...

    Text Solution

    |