Home
Class 12
MATHS
Find the volume of the tetrahedron havin...

Find the volume of the tetrahedron having coterminus edges represented by vectors `a=j+k, b=i+k" and "c=i+j`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the tetrahedron with coterminus edges represented by the vectors **a**, **b**, and **c**, we can use the formula for the volume of a tetrahedron: \[ \text{Volume} = \frac{1}{6} | \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) | \] Where: - **a** = \( \mathbf{j} + \mathbf{k} \) - **b** = \( \mathbf{i} + \mathbf{k} \) - **c** = \( \mathbf{i} + \mathbf{j} \) ### Step 1: Write the vectors in component form We can express the vectors as: - \( \mathbf{a} = (0, 1, 1) \) - \( \mathbf{b} = (1, 0, 1) \) - \( \mathbf{c} = (1, 1, 0) \) ### Step 2: Calculate the cross product \( \mathbf{b} \times \mathbf{c} \) To find \( \mathbf{b} \times \mathbf{c} \), we use the determinant of a matrix formed by the unit vectors and the components of **b** and **c**: \[ \mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} \] Calculating this determinant: \[ = \mathbf{i} \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: \[ = \mathbf{i} (0 \cdot 0 - 1 \cdot 1) - \mathbf{j} (1 \cdot 0 - 1 \cdot 1) + \mathbf{k} (1 \cdot 1 - 1 \cdot 0) \] \[ = -\mathbf{i} - (-\mathbf{j}) + \mathbf{k} \] \[ = -\mathbf{i} + \mathbf{j} + \mathbf{k} \] So, \( \mathbf{b} \times \mathbf{c} = (-1, 1, 1) \). ### Step 3: Calculate the dot product \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \) Now, we compute the dot product: \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (0, 1, 1) \cdot (-1, 1, 1) \] Calculating this: \[ = 0 \cdot (-1) + 1 \cdot 1 + 1 \cdot 1 = 0 + 1 + 1 = 2 \] ### Step 4: Calculate the volume Now we substitute this result into the volume formula: \[ \text{Volume} = \frac{1}{6} |2| = \frac{2}{6} = \frac{1}{3} \] ### Final Answer Thus, the volume of the tetrahedron is: \[ \text{Volume} = \frac{1}{3} \text{ cubic units} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Concept -Based Single Correct Answer Type Questions)|10 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-1 Single Correct Answer Type Questions)|45 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k vec a=11 hat i , vec b=2 hat j- hat k , vec c=13 hat k vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=hat i+hat j+hat k,vec b=hat i-hat j+hat k,vec c=hat i+2hat j-hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2hat i+3hat j+4hat k,vec b=hat i+hat i+2hat j-hat k,vec c=3hat i-hat j+2hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2hat i-3hat j+4hat k,vec b=hat i+hat i+2hat j-hat k,vec c=3hat i-hat j-2hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors vec(a)=2hat(i)-3hat(j)+hat(k),vec(b)=hat(i)-hat(j)+2hat(k) and vec(c)=2hat(i)+hat(j)-hat(k) .

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=11hat i,vec b=2hat j,vec c=13hat k

Find the volume of the parallelopiped whose coterminus edges are given by vectors 2hat(i)+3hat(j)-4hat(k),5hat(i)+7hat(j)+5hat(k)and4hat(i)+5hat(j)-2hat(k) .

The volume of the tetrahedron with edges i+j+k,i-j+k,j+2j-k is -

Find the volume of the parallelepiped whose edges are represented by the vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k)) .

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS
  1. Find the volume of the tetrahedron having coterminus edges represented...

    Text Solution

    |

  2. Let vec u , vec v and vec w be vector such vec u+ vec v+ vec w= ...

    Text Solution

    |

  3. If a and b are two non-parallel vectors having equal magnitude, then t...

    Text Solution

    |

  4. Let a, b,c be distinct non-negative numbers. If the vectors ai + aj + ...

    Text Solution

    |

  5. Let x, y and z be unit vectors such that abs(x-y)^(2)+abs(y-z)^(2)+a...

    Text Solution

    |

  6. If a, b and c are three unit vectors satisfying 2a times(a timesb)+c=0...

    Text Solution

    |

  7. If b=i-j+3k, c=j+2k" and "a is a unit vector, then the maximum value o...

    Text Solution

    |

  8. If a, b and c are non-zero vectors such that a times b=c, b times c=a ...

    Text Solution

    |

  9. Let vec O A= vec a , vec O B=10 vec a+2 vec b ,a n d vec O C=bw h e r...

    Text Solution

    |

  10. If a and b are two vectors such that 2a+b=e(1)" and "a+2b=e(2), where ...

    Text Solution

    |

  11. If u, v, w are unit vectors satisfying 2u+2v+2w=0," then "abs(u-v) equ...

    Text Solution

    |

  12. Let barV = 2i + j - k and barW = i + 3k If barU is a unit vector, th...

    Text Solution

    |

  13. Unit vectors a, b, c are coplanar. A unit vector d is perpendicular to...

    Text Solution

    |

  14. Let x=2i+j-2k" and "y=i+j. If z is a vector such that x.z=abs(z), abs(...

    Text Solution

    |

  15. From a point A with position vector p(i+j+k), AB and AC are drawn perp...

    Text Solution

    |

  16. Three vector a, b and c are such that abs(a)=1, abs(b)=2, abs(c)=4" an...

    Text Solution

    |

  17. If a, b and c are non-collinear unit vectors also b, c are non-colline...

    Text Solution

    |

  18. bar a=2 bar i+bar j-2bar k and bar b=bar i+bar j if bar c is a vecto...

    Text Solution

    |

  19. Let an angle between a and b be 2pi//3. If abs(b)=2abs(a) and the vect...

    Text Solution

    |

  20. If three vectors V(1)=alphai+j+k, V(2)=i+betaj-2k" and "V(3)=i+j are c...

    Text Solution

    |

  21. Let OA=a=1/2(i+j-2k), OC=b=i-2j+k" and "OB=10a+2b. Let p (in ("unit")^...

    Text Solution

    |