Home
Class 12
MATHS
Let a=2i-3j+4k, b=i+2j-2k " and "c=3i-j+...

Let `a=2i-3j+4k, b=i+2j-2k " and "c=3i-j+k`. Let V be, the volume (in cubic unit) of the parallelopiped having `a+b+c, a-b+c" and "a+b-c` as coterminus edges, then V = ________

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume \( V \) of the parallelepiped formed by the vectors \( \mathbf{a} + \mathbf{b} + \mathbf{c} \), \( \mathbf{a} - \mathbf{b} + \mathbf{c} \), and \( \mathbf{a} + \mathbf{b} - \mathbf{c} \), we will follow these steps: ### Step 1: Calculate the vectors 1. **Calculate \( \mathbf{a} + \mathbf{b} + \mathbf{c} \)**: \[ \mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}, \quad \mathbf{b} = \mathbf{i} + 2\mathbf{j} - 2\mathbf{k}, \quad \mathbf{c} = 3\mathbf{i} - \mathbf{j} + \mathbf{k} \] \[ \mathbf{a} + \mathbf{b} + \mathbf{c} = (2 + 1 + 3)\mathbf{i} + (-3 + 2 - 1)\mathbf{j} + (4 - 2 + 1)\mathbf{k} \] \[ = 6\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} \] 2. **Calculate \( \mathbf{a} - \mathbf{b} + \mathbf{c} \)**: \[ \mathbf{a} - \mathbf{b} + \mathbf{c} = (2 - 1 + 3)\mathbf{i} + (-3 - 2 - 1)\mathbf{j} + (4 - (-2) + 1)\mathbf{k} \] \[ = 4\mathbf{i} - 6\mathbf{j} + 7\mathbf{k} \] 3. **Calculate \( \mathbf{a} + \mathbf{b} - \mathbf{c} \)**: \[ \mathbf{a} + \mathbf{b} - \mathbf{c} = (2 + 1 - 3)\mathbf{i} + (-3 + 2 + 1)\mathbf{j} + (4 - (-1))\mathbf{k} \] \[ = 0\mathbf{i} + 0\mathbf{j} + 5\mathbf{k} \] ### Step 2: Form the matrix for the scalar triple product The volume \( V \) of the parallelepiped can be calculated using the scalar triple product: \[ V = |\mathbf{a} + \mathbf{b} + \mathbf{c} \cdot (\mathbf{a} - \mathbf{b} + \mathbf{c}) \times (\mathbf{a} + \mathbf{b} - \mathbf{c})| \] We can represent the vectors as a matrix: \[ \begin{vmatrix} 6 & -2 & 3 \\ 4 & -6 & 7 \\ 0 & 0 & 5 \end{vmatrix} \] ### Step 3: Calculate the determinant To find the determinant, we can expand it: \[ = 6 \begin{vmatrix} -6 & 7 \\ 0 & 5 \end{vmatrix} - (-2) \begin{vmatrix} 4 & 7 \\ 0 & 5 \end{vmatrix} + 3 \begin{vmatrix} 4 & -6 \\ 0 & 0 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} -6 & 7 \\ 0 & 5 \end{vmatrix} = (-6)(5) - (7)(0) = -30 \) 2. \( \begin{vmatrix} 4 & 7 \\ 0 & 5 \end{vmatrix} = (4)(5) - (7)(0) = 20 \) 3. \( \begin{vmatrix} 4 & -6 \\ 0 & 0 \end{vmatrix} = 0 \) Now substituting back: \[ = 6(-30) + 2(20) + 3(0) = -180 + 40 + 0 = -140 \] ### Step 4: Find the volume The volume is the absolute value of the determinant: \[ V = | -140 | = 140 \] ### Final Answer: Thus, the volume \( V \) of the parallelepiped is \( 140 \) cubic units.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept -Based Single Correct Answer Type Questions)|10 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-1 Single Correct Answer Type Questions)|33 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-2 Single Correct Answer Type Questions)|25 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If a=2i-3j+5k, b=3i-4j+5k" and "c=5i-3j-2k then volume of the parallelopiped with coterminus edges a+b, b+c, c+a is _______

If a=3i+2j+k, b=5i-j+2k" and "c=i+j+k , find [a b c]

Let a=2i+4j-5k , b=i+j+k and c=j+2k .Find the unit vector in the opposite direction of a+b+c

The area of a parallelogram having diagonals a=3i+j-2k" and "b=i-3j+4k is

If a=x""i+5j+7k, b=i+j-k, c=i+2j+2k are coplanar then the value of x is

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-SOLVED EXAMPLES (Numerical Answer Type Questions)
  1. Suppose a and b are two unit vectors and theta is acute angle between ...

    Text Solution

    |

  2. The vector a, b and c are such tha |a|=|b| = 1 and |c|= 2 (ii) a ...

    Text Solution

    |

  3. Let a=2i-3j+4k, b=i+2j-2k " and "c=3i-j+k. Let V be, the volume (in cu...

    Text Solution

    |

  4. If A(3i-2j-k), B(2i+3j-4k), C(-i+j+2k)" and "D(4i+5j+lambdak) are copl...

    Text Solution

    |

  5. Suppose a+x^(2)b+y^(2)c=0" and "a times b+c times a=16(b times c), the...

    Text Solution

    |

  6. Let veca,vecb and vecc be three vectors having magnitudes 1, 1 and 2 r...

    Text Solution

    |

  7. Suppose ABC is a right angled triangle with angleC=pi//2. If abs(AB)=5...

    Text Solution

    |

  8. Let a=5i+4j-k, b=-4i+j+5k, c=i+3j-k. Let alpha be a vector perpendicul...

    Text Solution

    |

  9. If the volume of parallelopiped whose coterminous edges are a=i+j+2k, ...

    Text Solution

    |

  10. Suppose P=(x+1)i+xj+xk, Q=x""i+(x+1)j+xk, k=x""i+xj+(x+1)k are coplana...

    Text Solution

    |

  11. Let abs(a)=sqrt(3), abs(b)=5, b*c=10, angle between b and c is equal t...

    Text Solution

    |

  12. Let a,b,c be three vectors such that a ne 0 and a xx b = 2a xx c,|a|...

    Text Solution

    |

  13. Let a=i-2j+3k. If b is a vector such that a*b=abs(b)^(2)" and "abs(a-b...

    Text Solution

    |

  14. Suppose the diagonals of a parallelogram are represented by vectors i+...

    Text Solution

    |

  15. Let a be vector, such that abs(a)=5. Then abs(a*i)^(2)+abs(a*j)^(2)+ab...

    Text Solution

    |

  16. If vecr=l(vecb xx vecc)+m(vecc xx veca)+n(veca xx vec b) and [veca, v...

    Text Solution

    |

  17. Suppose a=5i-3j+2k, b=-i+2j+3k, c=7i-18j+21k," then "[a-b" "b-c" "c-a]...

    Text Solution

    |

  18. If a=2i-3j+5k, b=3i-4j+5k" and "c=5i-3j-2k then volume of the parallel...

    Text Solution

    |

  19. Suppose a, b, c are three unit vectors such that " "abs(a-b)^(2)...

    Text Solution

    |

  20. If 4x+3y+12z=26, x, y, z, in R, then minimum possible value of x^(2)+y...

    Text Solution

    |