Home
Class 12
MATHS
If A(3i-2j-k), B(2i+3j-4k), C(-i+j+2k)" ...

If `A(3i-2j-k), B(2i+3j-4k), C(-i+j+2k)" and "D(4i+5j+lambdak)` are coplanar points, then `lambda=` ________

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\lambda\) for the coplanar points \(A(3i-2j-k)\), \(B(2i+3j-4k)\), \(C(-i+j+2k)\), and \(D(4i+5j+\lambda k)\), we can use the condition for coplanarity of vectors. The vectors \( \overrightarrow{AB}, \overrightarrow{AC}, \) and \( \overrightarrow{AD} \) must satisfy the scalar triple product condition, which states that the scalar triple product must be zero. ### Step 1: Find the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}\) 1. **Calculate \(\overrightarrow{AB}\)**: \[ \overrightarrow{AB} = B - A = (2i + 3j - 4k) - (3i - 2j - k) = (2 - 3)i + (3 + 2)j + (-4 + 1)k = -i + 5j - 3k \] 2. **Calculate \(\overrightarrow{AC}\)**: \[ \overrightarrow{AC} = C - A = (-i + j + 2k) - (3i - 2j - k) = (-1 - 3)i + (1 + 2)j + (2 + 1)k = -4i + 3j + 3k \] 3. **Calculate \(\overrightarrow{AD}\)**: \[ \overrightarrow{AD} = D - A = (4i + 5j + \lambda k) - (3i - 2j - k) = (4 - 3)i + (5 + 2)j + (\lambda + 1)k = i + 7j + (\lambda + 1)k \] ### Step 2: Set up the scalar triple product The scalar triple product is given by: \[ \overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD}) = 0 \] ### Step 3: Calculate \(\overrightarrow{AC} \times \overrightarrow{AD}\) Using the determinant form: \[ \overrightarrow{AC} \times \overrightarrow{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -4 & 3 & 3 \\ 1 & 7 & \lambda + 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 3 & 3 \\ 7 & \lambda + 1 \end{vmatrix} - \hat{j} \begin{vmatrix} -4 & 3 \\ 1 & \lambda + 1 \end{vmatrix} + \hat{k} \begin{vmatrix} -4 & 3 \\ 1 & 7 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 3 & 3 \\ 7 & \lambda + 1 \end{vmatrix} = 3(\lambda + 1) - 3 \cdot 7 = 3\lambda + 3 - 21 = 3\lambda - 18\) 2. \(\begin{vmatrix} -4 & 3 \\ 1 & \lambda + 1 \end{vmatrix} = -4(\lambda + 1) - 3 \cdot 1 = -4\lambda - 4 - 3 = -4\lambda - 7\) 3. \(\begin{vmatrix} -4 & 3 \\ 1 & 7 \end{vmatrix} = -4 \cdot 7 - 3 \cdot 1 = -28 - 3 = -31\) Putting it all together: \[ \overrightarrow{AC} \times \overrightarrow{AD} = (3\lambda - 18)\hat{i} + (4\lambda + 7)\hat{j} - 31\hat{k} \] ### Step 4: Calculate \(\overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD})\) Now we compute: \[ \overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD}) = (-i + 5j - 3k) \cdot ((3\lambda - 18)\hat{i} + (4\lambda + 7)\hat{j} - 31\hat{k}) \] Calculating the dot product: \[ = -1(3\lambda - 18) + 5(4\lambda + 7) - 3(-31) \] \[ = -3\lambda + 18 + 20\lambda + 35 + 93 \] \[ = (20\lambda - 3\lambda) + (18 + 35 + 93) = 17\lambda + 146 \] ### Step 5: Set the equation to zero Setting the scalar triple product to zero: \[ 17\lambda + 146 = 0 \] \[ 17\lambda = -146 \] \[ \lambda = -\frac{146}{17} \] ### Final Answer \[ \lambda = -\frac{146}{17} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept -Based Single Correct Answer Type Questions)|10 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-1 Single Correct Answer Type Questions)|33 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-2 Single Correct Answer Type Questions)|25 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If the points whose position vectors are 3i-2j-k,2i+3j-4k,-i+j+2k and 4i+5j+lambda k lie on a plane then lambda is equal to (A)-(146)/(17) (B) (146)/(17) (C) -(17)/(146) (D) (17)/(146)

If vectors i + j + k,i - j+k and 2i + 3j + mk are coplanar, then m =

If the vectors i-j+k,2i+j-k,lambda i-j+lambda k are coplanar,then

If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

If vectors 2i-j+k,i+2j-3k and 3i+aj+5k are coplaner, then a=

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-SOLVED EXAMPLES (Numerical Answer Type Questions)
  1. Suppose a and b are two unit vectors and theta is acute angle between ...

    Text Solution

    |

  2. The vector a, b and c are such tha |a|=|b| = 1 and |c|= 2 (ii) a ...

    Text Solution

    |

  3. Let a=2i-3j+4k, b=i+2j-2k " and "c=3i-j+k. Let V be, the volume (in cu...

    Text Solution

    |

  4. If A(3i-2j-k), B(2i+3j-4k), C(-i+j+2k)" and "D(4i+5j+lambdak) are copl...

    Text Solution

    |

  5. Suppose a+x^(2)b+y^(2)c=0" and "a times b+c times a=16(b times c), the...

    Text Solution

    |

  6. Let veca,vecb and vecc be three vectors having magnitudes 1, 1 and 2 r...

    Text Solution

    |

  7. Suppose ABC is a right angled triangle with angleC=pi//2. If abs(AB)=5...

    Text Solution

    |

  8. Let a=5i+4j-k, b=-4i+j+5k, c=i+3j-k. Let alpha be a vector perpendicul...

    Text Solution

    |

  9. If the volume of parallelopiped whose coterminous edges are a=i+j+2k, ...

    Text Solution

    |

  10. Suppose P=(x+1)i+xj+xk, Q=x""i+(x+1)j+xk, k=x""i+xj+(x+1)k are coplana...

    Text Solution

    |

  11. Let abs(a)=sqrt(3), abs(b)=5, b*c=10, angle between b and c is equal t...

    Text Solution

    |

  12. Let a,b,c be three vectors such that a ne 0 and a xx b = 2a xx c,|a|...

    Text Solution

    |

  13. Let a=i-2j+3k. If b is a vector such that a*b=abs(b)^(2)" and "abs(a-b...

    Text Solution

    |

  14. Suppose the diagonals of a parallelogram are represented by vectors i+...

    Text Solution

    |

  15. Let a be vector, such that abs(a)=5. Then abs(a*i)^(2)+abs(a*j)^(2)+ab...

    Text Solution

    |

  16. If vecr=l(vecb xx vecc)+m(vecc xx veca)+n(veca xx vec b) and [veca, v...

    Text Solution

    |

  17. Suppose a=5i-3j+2k, b=-i+2j+3k, c=7i-18j+21k," then "[a-b" "b-c" "c-a]...

    Text Solution

    |

  18. If a=2i-3j+5k, b=3i-4j+5k" and "c=5i-3j-2k then volume of the parallel...

    Text Solution

    |

  19. Suppose a, b, c are three unit vectors such that " "abs(a-b)^(2)...

    Text Solution

    |

  20. If 4x+3y+12z=26, x, y, z, in R, then minimum possible value of x^(2)+y...

    Text Solution

    |