Home
Class 12
MATHS
A unit vector c perpendicular to a and c...

A unit vector c perpendicular to a and coplanar with a and b, `a=i+j+k, b=i+2j` is given by

A

`1/sqrt(2)(i+k)`

B

`1/sqrt(2)(i-j)`

C

`1/sqrt(2)(j+k)`

D

`1/sqrt(2)(-j+k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector \( \mathbf{c} \) that is perpendicular to vector \( \mathbf{a} \) and coplanar with vectors \( \mathbf{a} \) and \( \mathbf{b} \), we can follow these steps: ### Given: - \( \mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k} \) - \( \mathbf{b} = \mathbf{i} + 2\mathbf{j} \) ### Step 1: Define the vector \( \mathbf{c} \) Assume \( \mathbf{c} \) can be expressed as: \[ \mathbf{c} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \] ### Step 2: Apply the condition for perpendicularity Since \( \mathbf{c} \) is perpendicular to \( \mathbf{a} \), we have: \[ \mathbf{c} \cdot \mathbf{a} = 0 \] Calculating the dot product: \[ (x \mathbf{i} + y \mathbf{j} + z \mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) = x + y + z = 0 \] This gives us our first equation: \[ x + y + z = 0 \quad \text{(1)} \] ### Step 3: Apply the condition for coplanarity For \( \mathbf{c} \) to be coplanar with \( \mathbf{a} \) and \( \mathbf{b} \), the scalar triple product must equal zero: \[ \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = 0 \] First, we need to calculate \( \mathbf{a} \times \mathbf{b} \): \[ \mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \] Calculating the cross product: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & 2 & 0 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i}(1 \cdot 0 - 1 \cdot 2) - \mathbf{j}(1 \cdot 0 - 1 \cdot 1) + \mathbf{k}(1 \cdot 2 - 1 \cdot 1) \] \[ = -2\mathbf{i} + \mathbf{j} + \mathbf{k} \] Thus, \( \mathbf{a} \times \mathbf{b} = -2\mathbf{i} + \mathbf{j} + \mathbf{k} \). Now, we need to compute \( \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) \): \[ \mathbf{c} \cdot (-2\mathbf{i} + \mathbf{j} + \mathbf{k}) = -2x + y + z = 0 \quad \text{(2)} \] ### Step 4: Solve the system of equations We now have two equations: 1. \( x + y + z = 0 \) 2. \( -2x + y + z = 0 \) Subtracting equation (1) from equation (2): \[ (-2x + y + z) - (x + y + z) = 0 \implies -3x = 0 \implies x = 0 \] Substituting \( x = 0 \) into equation (1): \[ 0 + y + z = 0 \implies y + z = 0 \implies z = -y \] ### Step 5: Express \( \mathbf{c} \) Thus, we can express \( \mathbf{c} \) as: \[ \mathbf{c} = 0 \cdot \mathbf{i} + y \cdot \mathbf{j} - y \cdot \mathbf{k} = y(\mathbf{j} - \mathbf{k}) \] ### Step 6: Normalize \( \mathbf{c} \) to make it a unit vector To make \( \mathbf{c} \) a unit vector: \[ \|\mathbf{c}\| = 1 \implies \sqrt{0^2 + y^2 + (-y)^2} = 1 \implies \sqrt{2y^2} = 1 \implies |y| = \frac{1}{\sqrt{2}} \] Thus, we can take \( y = \frac{1}{\sqrt{2}} \) (or \( y = -\frac{1}{\sqrt{2}} \)). ### Final Expression for \( \mathbf{c} \) Substituting \( y \): \[ \mathbf{c} = \frac{1}{\sqrt{2}} \mathbf{j} - \frac{1}{\sqrt{2}} \mathbf{k} = \frac{1}{\sqrt{2}} (\mathbf{j} - \mathbf{k}) \] ### Conclusion The unit vector \( \mathbf{c} \) is: \[ \mathbf{c} = \frac{1}{\sqrt{2}} (-\mathbf{j} + \mathbf{k}) \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-1 Single Correct Answer Type Questions)|33 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-2 Single Correct Answer Type Questions)|32 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|25 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

A unit vector c perpendicular to a=i-j and coplanar with a and b=i+k is

A unit vector perpendicular to 3i+4j" and "i-j+k is

let vec a=hat i+hat j-hat k and vec b=hat i-hat j-hat k and vec c be a unit vector perpendicular to vec a and coplanarwith vec a and vec b then vec c is

If a=i+j-k,b=i-j+k and c is a unit vector perpendicular to the vector a and coplanar with a and b,then aunit vector d perpendicular to both a and c is

Find a unit vector perpendicular to each of the vectors a+b and a-b, where a=3i+2j+2k and b=i+2k-2k

Find a unit vector perpendicular to the lane containing the vectors vec a=2hat i+hat j+hat k and vec b=hat i+2hat j+hat k